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ABSTRACT 

We cons t ruc t  a C r t r ans format ion  of the interval  (or the  torus)  which is 

topological ly  mix ing  but  has no invar iant  measure  of m a x i m a l  entropy. 

Whereas  the  a s sumpt ion  of C c~ ensures  exis tence  of max ima l  measures  for 

an interval  map,  i t  shows we cannot  weaken the smoothness  assumpt ion .  

We also compute  the local en t ropy of the example.  

Introduct ion  

We are interested in topological dynamical systems on the interval, that  is systems 

of the form f :  I -+ I where f is at least continuous and I is a compact interval. 

One can wonder whether such a system has maximal measures, i.e., invariant 

measures of maximal entropy. 

Hofbauer [15], [16] studied piecewise monotone maps, i.e., interval maps with 

a finite number of monotone continuous pieces (the whole map is not necessarily 

continuous). He proved in this case that  the system admits a non-zero finite 

number of maximal measures if its topological entropy is positive, and transitiv- 

ity implies intrinsic ergodicity, that  is existence of a unique maximal  measure. 

For this purpose, he built a Markov chain which is isomorphic modulo "small 

sets" with the first system. Buzzi [9] generalized the construction of the Markov 

extension to any continuous interval map. He showed that  the same conclusions 

as in the piecewise monotone case hold for C ~ maps. 
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One can wonder if these results are still valid under a weaker regularity assump- 

tion, at least in the mixing case. Actually, if a topological dynamical system is 

expansive and satisfies the specification property, then it has a unique maximal 

measure (Bowen [6], [7]). Specification is a strong property on periodic points, 

which must closely follow arbitrary pieces of orbits (see, e.g., [11] for more de- 

tails). In the particular case of continuous interval maps, the system is never 

expansive, but  the mixing property implies the specification property (this result 

is due to Blokh [4], see [10] for the proof). More recently, Ruelle [20] worked on 

positively expansive maps satisfying specification. 

In fact, transitivity is not much weaker than mixing since for any transitive 

continuous interval map f:  I -+ I either the map is mixing or there exist two 

subintervals J, K such that J U K = I,  J A K is reduced to a single point, 

f ( J )  = K ,  f ( K )  = g and f2] j ,  f2lK are mixing [2, p. 59]. We also recall that  

the topological entropy of any transitive continuous interval map is positive (it 

is greater than or equal to (log2)/2 [3], see [1] for the proof) and, if in addition 

the map is Lipschitz, it is finite (this classical result appears in the proof of 

Proposition 2.4). 

Gurevich and Zargaryan [12] built a continuous interval map with finite entropy 

which is transitive (in fact mixing) and has no maximal measure. This map has 

countably many intervals of monotonicity. The authors asked is this example can 

be made smooth on the whole interval. Actually it cannot: the end points 0 and 

1 are fixed points and the map is not monotone in a neighbourhood of 0 and 1; 

on the other hand it is not hard to see that a C 1 transitive interval map must 

have non-zero derivatives at fixed points, hence it is monotone near these points. 

In [9, Appendix A] Buzzi built a C r interval map which has no transitive com- 

ponent of maximal entropy, hence it has no maximal measure. He also sketched 

without details the construction of a C r interval map with positive entropy which 

admits no maximal measure and which is transitive after restriction to its unique 

transitive component (which may be a Cantor set). His proof of non-existence of 

any maximal measure relies on a result of Salama [21] whose proof turned out to 

be false (see Theorem 2.3 and Errata in [22]). Nevertheless Buzzi's proof can be 

modified - -  using extension graphs instead of subgraphs, as we do in Subsection 

2.3 - -  so as to be based on another theorem of Salama. 

The aim of this article is to build for any integer r_> 1 a C r mixing interval 

map which has no maximal measure. Transitivity instead of mixing would be 

enough, yet it is not more difficult to prove directly the mixing property. This 

family of examples is inspired by Buzzi's [9], the important addition is that the 
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system is transit ive on the whole interval. Non-existence of maximal  measure 

prevents the metric entropy from being an upper  semi-continuous map on the set 

of invariant measures. This is to be put  in parallel with the result of Misiurewicz 

and Szlenk [17], which shows tha t  the topological entropy, considered as a ,nap 

on the set of  C r interval t ransformations,  is not  upper  semi-continuous for the 

C ~ topology. 

In Section 1, we define for any 7" _> 1 a C ~ t ransformat ion of the interval [0, 4] 

which is topologically ,nixing. In fact it is C a everywhere except at one point. 

The map f~ is made of a countable number  of monotone  pieces and is Markov 

with respect to a countable parti t ion. Moreover, it can also be seen as a C ~ 

t ransformat ion of the torus by identifying the two end points. In the next section, 

we s tudy the Markov chain associated with f~ and we conclude it has no maximal  

measure, thanks to results of Gurevi5 [13], [14] and Salama [22]. As there is an 

isomorphism modulo  countable sets between the two systems, the interval map 

has no maximal  measure either. In Section 3, we compute  the local entropy of 

our examples. Buzzi [9] showed tha t  this quant i ty  bounds  the defect in upper 

semi-continuity and he gave an estimate of it depending on the differential order 

and the spectral  radius of the derivative. Our examples show these bounds are 

sharp since the two are realized. Moreover, it also equals the topological entropy. 

It  may  be of some importance:  we conjecture tha t  the Markov extension admits  

a maximal  measure when the topological entropy is strictly greater than  the local 

entropy. 

In addit ion to the problem of existence of maximal  measure, one can ask the 

question of uniqueness of such a measure. Recently, Buzzi [8] proved that ,  if 

the interval t ransformat ion is C 1+~ (i.e., the map is C 1 and its derivative is c~- 

HSlder), then there is no measure of  positive entropy on the non-Markov par t  

of the system. Since a transit ive Markov chain admits  at  most  one maximal  

measure, a transit ive C l+a t ransformat ion has a unique maximal  measure if it 

exists. For transitive non-smooth  interval maps  we still do not know if several 

maximal  measures can exist. I t  would imply tha t  the topological entropy of the 

critical points would be equal to the topological entropy of the whole map. 

ACKNOWLEDGEMENT: I am indebted to J4rSme Buzzi for many  discussions 

which have led to the ideas of  this paper. 

1. Construction and proof of mixing property 

In this section, we construct  a family of C r maps  f~: I -+ I for r _~ 1, where 

I = [0, 4]. We first give a general idea of  their aspect (see Figure 2). Then  we 
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give some lemmas which will be useful to prove the mixing property. Finally, we 

define fr  by pieces and check some properties at each step. At the end of the 

section, the maps fr  are totally defined and are proved to be mixing. 

1.1 GENERAL DESCRIPTION. Let A > 14 (logA will be the entropy of fr).  The 

map f~ is increasing on [0,1/2] and decreasing on [1/2, 1]. Moreover, f r (x)  = )fix 
5 - - r  f o r 0 < x < ~ A  , f r ( 0 ) = f ~ ( 1 ) = 0 ,  f~ (1 /2 )=4 .  

Let xn = 1 + 1/n and yn = xn + 1/2n 2 for every n _> 1, and let Mn be 

a sequence of odd numbers with (log M n ) / n  ~ log A. We choose a family of 

C ~ maps sn: [0, Mn] ~ [-1, 1] such that  sn is nearly 2-periodic and has Mn 

oscillations; sn(O) = 0 and sn(Mn) = 1 (see Figure 1). 

- m  

-l 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . .  

1: 2! 3i " 

Figure 1. The map s,,. 

Then we define fr  on [Xn, Yn] by 

f (x)=a . 

In this way, fr(x~) = ,k-nrx,,, fr(Yn) = A-n~'Yn and fr  oscillates Mn times 

between xn and Yn like s,~. It is worth mentioning that  xn and yn are periodic 

points with period n + 1, because f~ is linear of slope )~r on [0, yl)~-~]. 

On [Yn+l, xn], f~- is increasing. 

Finally, f~ is increasing on [Yl, 4], with fr(4) = 4. Figure 2 gives a general idea 

of f t .  
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1 3 13 0 ~- 1 x3 Y3 x2=-~ y2='g x~=2 y l = ~  4 

Figure 2. The map f~ (scale is not respected). 

The map fr  will be built to be mixing and C r on [0,4], and [ f r  ~] ~ = A ~. 

Furthermore, the minimum of s~ will be chosen such that  f r ( x )  = ~-nry~+l if x 

is a local minimum of f r  in ]x,~, y,~[ in order to obtain a Markov map. 

This brief description is sufficient to build the Markov chain associated with 

fr  and prove that  f r  has no maximal measure, which is done in Section 2. The 

rest of this section, which may be skipped at a first reading, is devoted to prove 

that maps satisfying these properties do exist. 
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1 . 2  M E T H O D  FOR THE P R O O F  OF MIXING P R O P E R T Y .  W e  recall the definition 

of mixing for a topological dynamical system. 

Definition 1.1: Let T: X ~ X be a continuous map where X is a compact 

metric space. The system is (topologically) mix ing ,  if for every non-empty open 

sets U and V, there exists N _7 0 such that  for every n >_ N ,  T- '~U A V ~ 0. 

In our case, we will show that  for any non-degenerate subinterval J C I ,  there 

exists n _> 0 such that  f ~ ( J )  = I.  So f k ( j )  = I for every k _> n and the 

system is mixing. For this, we will show that,  for some constant #o > 1, any 

non-degenerate subinterval J satisfies one of the two following conditions: 

(1) 3k > 0 such that  I lk(J)]  > #olg], where ]J] denotes the length of J ,  

o r  

(2) 3k > 0 ,3n  > 1 such that  either 0 • f ~ ( J )  or Int ( f~ ( J ) )  contains xn or y~. 

Then it will be enough to show that  for any non-degenerate subinterval J 

containing 0 or xn or Yn, there is a k such that  f k ( j )  = I .  

Lemma 1.3 says that  an interval near a suitable extremum satisfies (1) or (2). 

Lemma 1.2, which is trivial, says how an interval containing a repelling periodic 

point behaves. 

LEMMA 1.2: Let  f:  I -~ I where I is a compact interval, and let zo be a periodic 

point  of  period p. Assume ( fP) ' (x)  ~/z  > 1 for every x • [Zo, zl]. Then for every 

x > zo there exists n > 0 such that  fn([Zo,X]) D [Zo, Zl ]. 

LEMMA 1.3: Let f :  I --4 I be a C r map where I is a compact  interval and let zo 

be an extremum such that  zl  = fk(zo)  is a periodic point  o f  period p. Suppose 

f k ( X )  : Zl ÷ C ( z  - zo)  a for [x - zol <_ 6, with C ~ 0 and a an even integer. 

L e t  z2 -~ f k ( z o  -- 6) : f k ( z  0 ÷ ~). S u p p o s e  fP[[zx,z~] is linear of  slope # > 1, and 

a[z2 - z l[ /~ >_ #o. Then for every non-degenerate interval J C [Zo - 6, Zo ÷ 6], 

there exists n >_ 0 for which one of  the following cases holds: 

(i) I p ( J ) l  > ,o l J i .  

(ii) z2 c Int  ( f~ ( J ) ) .  

Proof'. Let J =  [a,b] be an interval in [ Z o - 6 ,  Zo+6]  w i t h a  < b. I f z o  E J 

then f k ( j )  = [zl, y] for some y. The hypotheses imply that  fP(z2) > z2, hence 

z2 cannot be an end point of I and one can choose 1 < # '  < # and z3 > z2 such 

that  ( fP) ' (x)  > #' for all x E [zl, z3]. According to Lemma 1.2 there exists n 

such that  f n ( j )  D [zl, z3], thus z2 e Int ( f ' ( J ) ) ,  which is (ii). 

Now assume that  zo ¢ J .  We restrict to the case C > 0 and Zo < a < b < Zo+~. 

Let J '  = f k ( g )  : [a',b'] C]zl,z2] and g = fP. The point zl is fixed for g and g 
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is linear of slope # > 1 on [zi, z2], so the map g can be i terated on J '  as long as 

gm(b') <_ z2. Let m be the first integer satisfying gm(b') > z2- Then there are 

two cases: 

• g~ (a ' )  < z~ < gm(b'),  which implies (ii) with n = m p  + k. 

• z2 <_ g'~(a') < gr~(b'). 

In this case, as (fk) ,  is positive and increasing on [zo, Zo + 5] one gets [J ' l  > 

a C ( a  - zo)~- l ] J ]  and 

lfmP+k(J)l 2 ~m~c(a - zo)~- i lJ] .  

But gm(a')  - z i  = # ~ ( a ' - z i )  > z 2 - z i ,  so 

# m  >_ _ _  Z 2 - - Z  1 Z 2 - - Z  1 

a ' - z l  C (a - zo )  ~' 

and 
t f m p 4 - k ( g )  I :> o~lz2 -- Zll  c~[z2 --  Z l l  

- ~ - - z ; T  IJI > g I JI _> .01Jt. | 

We add a lemma which will be useful for some estimates. 

LEMMA 1.4: Let  A > 8 and [.] refer to the entire part  o f  a number.  Then for all 

n > l :  

(i) ~ _> A. 
(ii) An An An ~ <_2[~]-1_< ~.  

(iii) 2 [2-~] - 1 _> A -  3. 

Proof: (i) is obtained by s tudying the function x ~ - ~ / ~ x - 1  _ x 2 .  

For the first inequality of (ii), we write 

2 ~ n 2 - 1 - > 2 ~ +  2--~-3 >2n 2 

thanks to (i). The second inequality is obvious. 
,V • ,k n 

(iii) comes from 2 [ 2 ~ ]  - 1 _> ~v - 3 and from (i). | 

1.3 CONSTRUCTION OF f r  ON [1,yi]. Recall tha t  A > 14, f r (1)  = 0, xn = 

1 + 1 /n  and y,~ = Xn + 1 /2n  2 for n > 1; in part icular  Yi = 5. In this subsection, 

we define f r  on [1, Yi] with more details. For this purpose, we define fr  on each 

[xmYn] and then on each [Yn+l, x . ] .  At  each step, we check tha t  the various 

pieces can be glued together  in a C ~ way and If¢(x)l <_ A r for x E [1, yl]. In 

addition, we show that  fi. is C r on the right of  1. Finally, we focus on the mixing 



260 S. RUETTE Isr. J. Math. 

property. The  map f r  is not total ly defined yet, but  at this stage we only need 

to know tha t  fr(x) = Arx for 0 < x < 5A-~ and fr(½) = 4 in order to prove tha t  

4 Then  any non degenerate subinterval of [1, Yl] satisfies (1) or (2) with po = ~. 

we show tha t  for an open interval J containing xn or Yn there is a k satisfying 

f ~ ( J )  = [0, 4]. 

1.3.1 On the subintervals [xn, y,~]. Set M,~ -- 2 [An/2n 2] - 1 (where [.] denotes 

the entire part) ,  m,~ = 1 - l / (n  + 1) 2, 5 -- A - r ,  C = 1/452 and k ,  = 2Ar/M,~. 
First,  we choose a sequence of C ~ functions s , :  [0, Mn] ~ [-m,~, 1] satisfying: 

(3) s~(0) = 0, sn(Mn) = 1, sn is increasing on each [2k,2k + 1] (0 < k < 

(M~ - 1)/2),  sn is decreasing on each [2k + 1, 2k + 2] (0 _< k _< (Mn - 3)/2) .  

(4) sn(x) = 1 - C ( x - a )  2 for Ix-a]  <_ 5 i f a  is a local maximum ofs~ ,  a ~ Mn, 
and s,~(x) = - m n  + C(x - b) 2 for tx - b I <_ 5 if b is a local minimum of 

sn, b ~ 0 .  

(5) s~(x) = kn(x - M~) + 1 for M,~ - 5 _< x < Mn. 

(6) sn(x) = knx for x e [0, 5]. 

(7) Vk > 1, BAk, Vn > 1, I s~)l oo <- Ak. 
(8) [ s',~[ o¢ <_ A r and Is~(x)l >_ min{1/2,  k~} if Ix - d[ > 5 for all local ex t rema  

d el0, Mn[. 
P roper ty  (7) can be fulfilled because m,~ and k~ are bounded (3/4 < m~ _< 1, 

kn _< A r) and the maps s~ have a 2-periodic looking. 

I f d  is a local ex t remum in ]0, M,~[, then [sn(d-(f)-s,~(d)l = Is,~(d+5)-s,~(d)l = 
1/4; moreover [s~(5) - sn(0)[ < 1/4 and [s,~(M,~ - 5) - s~(M,) [  _< 1/4. Thus if 

d and d' are two successive ex t rema in [0, Mn], the absolute value of the average 

* and is less than  slope between d +  5 and d ' - 5  is at  least (ran + 1 / 2 ) / ( 1 -  25) > 

2. Since Is~(d + 5)1 = Is~(d - 5)1 = At/2 for any ex t remum d e]0, Mn[, Proper ty  

(8) can be fulfilled. 

Secondly, recall tha t  f r  is defined for x E [xn, y~] by 

Now, we look at  the C ~ character  of f r  near 1. The  definition of f r  gives 

)~-nrMk S(k) ( Mn x- -  - xn/~ for x E [xn, yn], 

where f(k)(Xn) and f(k)(y~) are to be unders tood as left (resp. right) derivatives 

at  this stage. 

Since Mn <_ An/n 2, Proper ty  (7) leads to 

[f(k)(x)l <_ A-n(r-k)n-22k-lAk.  
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One has A1 = )~* by (8), thus [f'(x)] <_ ;~. Moreover, for 0 < k < r, 

II k)(x)l 0 whenx 
n > l  

Notice that  the main factor in this estimate is )~-n(r-k). If k > r, the k-th 

derivative f(k) does not tend to zero any longer and it can be shown that  f~ 

cannot be C r+l at point 1. 

As f r (x )  = ~rX for x E [0, ylA-~], the (n + 1)-th iterate of the map on [xm Yn] 

is given by f~+l (x )  = A ~  fr (x) .  

Notice that  mn is chosen such that  min{f~+l(x) :  x E [xn, yn]} = Y~+I. More- 

over f~+l(xn)  = xn and frn+l(yn) = y,~. 

We sum up the previous results in two lemmas, the first one is about  derivatives 

and the second summarizes the behaviour of fr  on [xm y,~]. 

LEMMA 1.5: 

• I f ; (x) l  <_ ,~ forx  e [x~,y~] .  
• lim ~-~, f(k) (X) = 0 for 0 < k < r. 

xEUn>l[Xn ,Yn] 

LEMMA 1.6: Let t~ = xn + i(yn - x n ) / M ,  for i = 0 , . . . ,  M~. Then 
t n t n • f~ is monotone on [ i - I ,  i ]' 1 < i < Mn. 

• f~(t'~) = A-n~,~+l i f i  is even, i 7 ~ O, and f~(xn) = A-nrx~.  

• f~(t~) = A - ~ y ~  i f i  is odd. 

1.3.2 On the subintervals [yn+l,xn]. We define 

wn = Yn+t ÷ 
n + 2  

2n(n + 1)2M~+lk~+l" 

We have w~ E]y,~+l,xn[. On [Yn+l,Wn], w e  define f~ to be affine of slope 

&-(n+l)rM,~+lkn+ 1 (recall that  f~(Yn+l) = )~-(n+l)ryn+l is already defined). 

Because of this definition f r  is affine (thus C °°) in a neighbourhood of Y~+I. 

Moreover 

n + 2  _ )_(n+l)r (1 + 1 ) 
fr(Wn) = ~-(n+l)rYn+l + ~-(n+l)r 2n(n + 1) 2 

so fr(w, ,)  = ~-(n+l)*x~ and fn+2(wn) = x~. As we are going to extend f r  in a 

C °o way on [wn, xn], we will have 

f~(xn) = 2A -(n-1)r ,  f~(wn) = 2A -nr ,  and f(k)(x,~) = f (k)(wn)  = 0 for k _> 2. 
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Set h.  = f~(x~) - f r ( ~ )  and Z~ = xn - ~ .  
bounds  for hn and In. First  

We have 

and  

We compute  upper  and lower 

h . = ~ _ . ~ ( ~ _ ~ _ ~ y . + ~ _ ~ _  ~ n_+_2 ~ 2 ~ _ ~  
2n(n + 1) 2 ] -< \ 

n + 2  3 
2n(n + 1) 2 8 

f o r n =  1 

n + 2  n 2 + 2 n  1 1 
2n(n+l)  2 -  2n2(n+1) 2 - < ~ n  2 -< 8 f o r n > 2 .  

3 for all n > 1, one Since x~ > 1 ,yn+l  _< Y2 = ~ and (n + 2)/2n(n + 1) 2 < ~ 

gets 

hn > A-~r(1 - 2A -~) > 6 A - ~  
- -  - -  7 * 

For l~ one has 

/ ~ = 1 + - 1  _1  1 1 n + 2  
n n + 1 2(n + 1) 2 2n(n + 1)2Mn+lkn+l 

_ n + 2  ( 1 )  
2n(n+l)  2 1 - ~ - ~  . 

As (n + 2)/2n(n + 1) 2 < 3 _ ~, one gets l~ < 3 too. Moreover 

n + 2  1 

2n(n + 1) 2 ~ 2(n + 1) 2 

1 thus l~ > 1 /4 (n  + 1) 2. Final ly we obta in  the inequalities and 1/2A ~ <_ ~ 

1 3 
~A -n~ < ~ .  < 2~ -"~ and 4(n + 1)2 < l .  < ~. . . . .  

We normalize f~ on [wn, Xn] as follows: we define ~ :  [0, 1] -+ [0, 1] by 

~n(x) = h ; l [ I ~ ( ~ .  + Z.x) - I r ( ~ ) ] .  

The  a im of this normal iza t ion  is to check tha t  the sequence ~ ,  can be chosen 

with  uniformly bounded  k- th  derivatives then to come back to f r  and show tha t  

f~ is C ~ at  the right of 1. We want  to have 

~n (1) = 2hnllnA-(n-1) r, ~n(O) ---- 2hnllnA -nr, 

and 

~(k)(o) = ~(k)(1) = 0 for k > 2, 
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thus ~ ( 1 )  <_ ~A r and ~'n(O) <_ g'7 Consequently,  it is possible to build a se- 

quence of functions ~ satisfying these conditions and the following addit ional  

conditions: 

Vk > 1, 3Bk, Vn >_ 1, I 9~(k) l o~ _< Bk 

and 
2 , Ar" 

Vx C [0, 1], 5 ~ , ( 0  ) < ~ : ( x )  < 

By definition of ~ , ,  the derivatives of f r  are given by 
/ X 

T~- < (n + for w~ < x < x,~, 

hence for every k > 0 

f:k>(x) w h e n x  1, x e  
n ~ l  

Moreover, 4A-nr  < f~r(X) ~ Arhnl; 1 for every x e [wn, Xn] and 

h~l; 1< 8 ( n + 1 )  2 < 1  b y L e m m a l . 4 ( i ) .  
- -  ~nT'  - -  

The  next  lemma recalls the behaviour  of f r  on lYe+l, xn]. 

LEMMA 1.7: 
• ~"4~-nr <_ fir(x) _< /~r :orx e [Yn+l,Xn]. 
• :,(w,,) = ),-I'~+1)~x,,. 

• lim x-~, f(k)(x) = 0 for 0 < k < r.  
~ E U n ~ I  [Yn-bl ,xn] 

1.3.3 Beginning of the proof of the mixing property. We show tha t  any non- 

degenerate  subinterval g C [1, y,] satisfies (1) or (2) with #o = 4" It is sufficient 

to consider J C [x~, y~] or J C [Y~+I, Xn]. 
First,  we look at [Yn+l,Xn]. For x E [yn+l,Xn], frn+l(x) ~ - ~  )~nrfr(x) and the 

4 derivative of h satisfies re(x) >_ ~"4~-~r by Lemma 1.7, so [f~+l(j)] >_ ~[g] if 

J c 
Now, we focus on [xn,yn]. According to Proper ty  (8), s~n(x) ~ min{kn, 1/2} 

for all x C [M~ - 1 + ~, M~], thus 

(f~n+l)'(x) > _> 2 for a l l x E  [Yn _ ( y~-  x , ) (1 -~ ) , y~]  . 

Because of P roper ty  (4), s,~(Mn - 1 + ~) = -m~ + 1/4 < 0, thus 

frn+l (y n (yn -- Xn)(1-- ~) ) 
- -  M n  ~ xn. 
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Let tn = (Yn - x n ) / A ~ M n ;  then according to Lemma 1.2, there exists an integer 

such tha t  f (n+l )~( [y ,  _ tn,  y,~]) D [xn, y,~], so there exists z C [Yn - tn,  Yn[ with 

f ( n + l ) ~ ( z )  = xn .  Because of the choice of tn and Proper ty  (5), f ~ + l  is affine of 

slope k n M n  = 2A r on [Yn - t~, Yn]. Let k > 0 be the maximal  integer i such tha t  

A~i(yn - z) _< t,~. Then  z,~ -- y~ - Ark(yn - z) belongs to [yu - t,~, y,~ - tn/2A ~] 

and f ( ~ + l ) ~  (z,~) = xn if ~u -- ~ + k. 

Set 
! 

/ ( y .  - zn)(Yn -- x ~ )  
5n 

V , 

and let a be a local max imum of f r  on ]xn, Yn[. If ]t I < 5n, then 

M n t  2 < Yn --  Zn 1 52 . 

Y n -  x,~ - C ( y n -  x n )  <- C M n A  - - - - - - ~  <- 

Now we check the hypotheses of Lemma 1.3 for the ex t remum a: 

• f ~ + l ( a )  = y~ and f ~ + l ( y n )  = yn.  

• f ~ + l ( a - t - t )  = y ~ - C ( M ~ t ) 2 / ( y , ~  - x~ )  if Itl <_ 5~ (because of P roper ty  (4)). 

• f ~ + l ( a  - 5 . )  = f 2 + ~ ( a  + 5n) = zn. 

• f ~ + l  is linear on [zn, Yn], with a slope k n M n  >_ 2. 

• 21zn--Y'~l~. = 2 c z~) _> ~ V 2 ~ ( y n _ ~ ,  ) = 2 and the last quant i ty  

is greater  than  2 because Mn > A - 3 by Lemma 1.4 (iii) and A _> 14. 

Consequently, we can apply Lemma 1.3 at  this maximum: for any non-degenerate 

subinterval g C [ a - 5 n ,  a + 5,~], there exists k such tha t  either z~ e Int ( f k ( g ) )  or 

] fk ( j ) ]  > 2]J]. Since f(,~+l)~, (zn) = xn and d '~+1)~" is a local homeomorphism 

in a neighbourhood of Zn, if Zn E Int ( f k ( j ) )  then xn E Int ( fk '  ( j ) )  with k ' =  

k + (n + 1 ) a ~ .  

Set 

/ ( ~ n  - y . + l ) ( y n  - ~ )  5" 
V C M ~  

and let b be a local minimum of f r  on ]xn, Yn[. If It] _4 5", then 

M n t  2 <  wn - y,~+l 2 n ( n  + 2) 2 52 . 
Yn - xn  - C ( y n  - x n )  = i n + 1)2A 3r ~ ~ ~ 

We check the hypotheses of Lemma 1.3 for the ex t r emum b: 

• f~+l(b)  = Y~+I and frn+2(yn+l) = Yn+l- 

* f~+ l (b  + t) = Yn+l + C ( M n t ) 2 / ( Y n  - x~ )  if It[ <_ 5" (because of P roper ty  

(4)). 

• f : + l ( b  - ~') -- f 2 + l ( b  + 5") = ~ and f p + ~ ( ~ . )  = x~ .  
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• f~+2 is linear on [Yn+:, wn] of slope Mn+lkn+: >_ 2. 

• 2 1 y . + :  - > 2 .  

To prove the last point,  define 

= 
n(n T 2)M2A r 

] = 8(n+1)5 

One has Mn _> A - 3 (Lemma 1.4 (iii)), A > 14 and 

2n(n + 2) (n + 1) 2 + n 2 + 2 n -  1 
- > 1 ,  

(n + 1) 2 (n + 1) 5 

thus Cn _> (14 x 112)/16 > 1. 

Hence we can apply Lemma 1.3 to this extremum: for any non-degenerate 

subinterval J C [b - (i~n, b + gn], there exists k such tha t  either x,~ c Int ( f k ( j ) )  
or [ fk( j ) [  >_ 2]J[. 

If Ix - d[ >_ (ilYn - x , ] /Mn for all local extrema d e]xn, Yn[, then [(f~+I)'(x)] > 

min{2A r, Mn/2}  >_ 2 according to Property (8). I f a  e]Xn, Yn[ is a local maximum 

and (in <_ Ix - a] <_ (ilYn - xn]/Mn, then 

I(f~+') ' (x) l  _> I(f~'+:) '(a + ( in ) [ -  2M2C(in > V / ~ / 2 .  
Yn -- Xn 

I fb  G]x~, yn[ is a local minimum and (i~ <_ Ix - b[ <_ (ilYn - Xn[/Mn, then 

2 , Mn /2n (n  + 2) n + l  ! ' 2M~C(In _ A~/2 
t(frn+l)'(X)l>_l(f; ) (b+(~n)  ] - -  y n _ X n  " ~ V - ~ - l ~  >-Ar/2Mn/2. 

Consequently, ](fg+l) ' (x)]  > 2 if for all local maxima a, Ix - a I _> (in and for all 

local minima b, Ix - b] >_ (i~. 
Finally, if J is a non-degenerate subinterval of [xn, Yn], there exists k such tha t  

either Ifrk(J)l > 21J I or Int ( f~(g))  contains xn. Together with the previous 

result on [Yn+:, x ,]  it gives: 

LEMMA 1.8: I f  J is a non-degenerate subinterval of[l ,  y:], there exist k >_ 0 and 
n >_ 1 such that either [f~(J)[ -> ~lJI or xn e Int ( f k ( j ) )  or y ,  • Int ( f~(J))  

The point xn is periodic of period n + 1, and (f~n+l)'(x) _> 2 for xn _< x < 

xn + (Yn - x n ) / 2 M n .  In this situation, we can apply Lemma 1.2. For any interval 

g = [x,,  x] with x > x ,  there exists k such tha t  frk(J) D Ix,,  xn+(yn -xn ) /2Mn] .  
But 

( ) ( .. x.) 
f r  n+: xn + Yn2Mn- x______~n _> xn + YnMn- x~ and f r  n+: xn + -~£ = Yn- 
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Hence f~+2(n+l ) ( j )  D [Xn, y,]. 

We do the same thing for y~: for any interval J = [y, Yn] with y < yn there 

exists k such tha t  f k ( j )  ~ [xn, yn]. 

Moreover 

f r  (n+l) ([Xn, Yn]) n+l = f~' ([Y,~+I, Y.]) = [A-lY.+I ,  Y.] D [1/2, 1], 

e 2 ( n + 1 ) + l / r  1", 
so j r  (LX,~, Ynl) = [0, 4]. This leads to the next lemma. 

LEMMA 1.9: I f  J is an open subinterval with xn C J or yn E J,  then there exists 

k >_ 0 such tha t  f ~ ( J )  = [0,4]. 

1.4 CONSTRUCTION OF fr  ON [0, 1] AND [Yl, 4] AND END OF THE PROOF OF THE 

MIXING PROPERTY. Recall tha t  f r (x )  -- Arx for 0 < x < 5A-~ and 5 -- A-r .  

We define f~ near the points 1/2, 1 and 4 as follows: 

• f~(x) = 4 -  C o ( x -  1/2) 2 for I x -  1/21 _< 5, with Co -- ~53 -1. 

• f~(x) -- C l ( x -  1) ~1 for 1 -  5 < x < 1, with ~1 = 2r and C1 = 51-~1. 

• f ( x ) = - 4 + A ~ ( x - 4 )  f o r 4 - 3 5 < x < 4 .  

The definition of fr  on the left of 1, together  with Lemmas  1.5 and 1.7, leads 

to the next lemma. 

LEMMA 1.10: fr is C r in a neighbourhood of  l .  

Now we complete the map such tha t  the pieces are glued together  in a C °~ 

way (except at  1 where f r  is only C~). As fr~(1/2 - 5) -- 3 and 

h ( 1 / 2  - 5) - f~(55) 3 - 3A -~ 
- - -  e [ 2 , 6 ] ,  

( 1 / 2 -  5) - 56 1 - 7A -~ 

1 - 5 ] .  In the the map  can be chosen such tha t  3/2 _< f [ (x )  < A r for every x E [~5, 

same way, it is possible to have - A  r < f~(x) <_ - 3 / 2  for every x E [1/2 + 5, 1 - 5 ]  

because f~(1/2 + 5) -- - 3 ,  f~(1 - 5) = - 2 r  and 

h ( 1 / 2  + 5) - f~(1 - 6) _ 8 - 5A -~ 
- -  e [ 7 ,  1 2 ] .  

1/2 - 25 1 - 4A -~ 

Finally, f¢(Yl) = 2 because of the earlier construct ion of f r  on [Xl, Yl] (see sub- 

section 1.3.1) and 

f ~ ( 4 -  35) - fr(Yl)  _ 4 -  4A -~ _ 8 
( 4 -  3 3 3 -~ 3 56) - Yl 2 5 A 

Hence it is possible to have ~ < f~(x) <_ A~ for Yl < x < 4. 
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1 5]U[½ + & l  5] U [yl, 41. Consequently,  3 < i f , (x) l  _< Ar if x C [0, ~ - 

A quick check shows tha t  Lemma 1.a can be applied to the two ex t rema 1/2 

and 1 (we apply it only to the left of 1). For z0 = 1, the repulsive periodic point  

is z, = 0, the interval [zl, z2] is [0, A-"], and the growth factor is  oa/a = 2r. For 

z0 = 1/2, the repulsive periodic point is zl = 4, the interval [z,, z2] is [ 4 -  hA-r ,  4], 

and the growth factor is 2a/hA - r  = 3. 

Since f ] (A -~) = 0 and f r ( 4 -  3 - r  ~A ) = Yl, for any non-degenerate interval 

3 f~(J)  contains g C [0, 1] O [Yl, 4] there exists k such that  either I lk(J)]  > ~lgl or 

one of the points 0, 4, Yl. 

LEMMA 1.11: / f  J is a non-degenerate 

exists k >_ 0 such that either [ /~(J)[  >_ 

Yl E Int ( f~(a)) .  

subinterval of [0, 1] U [Yl, 4], there 
3 ~lJI or 0 e i f ( J )  or 4 e f f ( J )  or 

Since fff([0, A-r]) = [0, 4] and f,3([4 _ 3  - - r  2 5A , 41) = f~ ([Yl, 4]) ~- [0, 41, applying 
Lemma 1.2 we obtain the next  lemma. 

LEMMA 1.12: I f  J is a non-degenerate subinterval containing either 0 or 4, then 

there exists k >_ 0 such that frk(J) = [0, 4]. 

The  construct ion of fr :  [0, 4] --~ [0, 4] is now finished. The  map is C r on [0, 4] 

(and is C ~ on [0,4]\{1}), and I f¢l oo = A *. Fur thermore,  if we put  together  

Lemmas 1.8, 1.9, 1.11 and 1.12, we see tha t  for any non-degenerate subinterval 

J C [0,4], there exists k > 0 such f~(J)  = [0,4]. 

PROPOSITION 1.13: fr: I --~ I is C r, mixing and I f~l ~ = At- 

Remark  1.14: If we identify the two end points 0 and 4, the map f r  can be seen 

as a mixing C r map on the torus, since f~(k)(0) = f~(k)(4) for every k _> 1. 

2. M a r k o v  c h a i n  a s s o c i a t e d  w i t h  f r  

We show tha t  f r  is a Markov map for a suitable countable part i t ion.  The  as- 

sociated Markov chain reflects almost all topological propert ies of the system 

(L:r). 

2.1 DEFINITION OF THE GRAPH. We make explicit the Markov par t i t ion  V~ 

and the associated graph Gr.  
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L e t t ~ = x n < t ~ < . - . < t  n = Ma Yn be the local extrema of f~ on [xn, Yn]- Let 

- l r t n  tn]" 1 < n, 1 < i < M n }  Vr --LL i--1, i J" -- 

U {[A-k~xn, A-k~y,]: 1 < k < n} 

U {[)~-k~Y,+l, )~-k~x,]: 1 < n, 0 < k < n} 

U "rA-"r tt yn, A-(~-I)~]: 2 _< n} 

U {[A-~yl, 1/2], [1/2, 1], [Yl, 4]). 

The elements of V~ have pairwise disjoint interior and their union is ]0, 4]. We 

check that the map fr is monotone on each element of V~ and, if J E V~, then 

f r ( J )  is a union of elements of V~ U {0}. 
rtn t n] • By Lemma 1.6, h is monotone on L i-1, i J, h([t~,  t~]) = [A-nrx~,  A-nry~] 

n n ri~--nr x A--nr 1 and f~([t i_l ,  t i ]) = [A-n~yn+l, A-'~x~] U [ ,~, y,J if 2 < i < Mn. 

• By Lemmas 1.6 and 1.7, f~ is increasing on [y,~+l,Xn] for all n > 1 and 

= [ , ~ - - ( n + l ) r y n + l , , ~ - - n r ]  U U F)~--nrx [ k + l ,  )~ -nryk+l]  

k>n 
r/~--nr ,~--nr x 1 

U [ Yk+l ,  kJ. 

• Since f~(x)  = ) ¢ x  for x E [0, )~-~Yl] we have 

-- f~([A-k~xn,  A-kryn]) = [A-(k-1)~Xn, A-(k-Z)~y,~] for 1 < k < n 

and this interval is an element of V~ except [xn, y~] liMa rtn tnl which = I, J i= l t  i - - l ,  i P 

is a union of elements of V~. 

- k r  - k r  - - f r ( [  )~ Yn+l , )~  Xn]) = [ ) c ( k - 1 ) r y n + l ,  ) ~ - ( k - 1 ) r x n ]  fo r  1 < k < n .  

-f~([A-(n+l)~y.+l,  A-~] )  = [A-~y~+i,  A-(~-I) ~] 
r ) - n r  ,~--nr x ] = [ Yn+I, ~j U [A-nrxn, A-n~yn] 

U [A-n'y., A -(n-1)r] 

for n > 1. 

• fr  is monotone on [0, 1/2], [1/2, 1] and [Yz, 4] (see Subsection 1.4) and 

- f r ( [ A - ~ y l ,  1/2]) = [yl, 4]. 

- f~([1/2,  1]) = [0, 4] = {0} U U J" 
JEV~ 
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- S r ( [ y l ,  4]) = 4] 

= [A-ryl, 1/21 U [1/2, 1] U [Yl, 4] U U [Yn+l, Xn] 
n > l  

u U 
l~_i~_M n 

We define the directed graph G~ as follows: the set of vertices of G~ is V~ and 

there is an arrow from J to K if and only if K C f~ (J ) .  The decomposition 

above of f~ (J) into elements of V~ for all J E V~ gives an exhaustive description 

of the arrows in Gr. 

Notice that the graphs G,. are identical for all r > 1. The only difference is 

the name of the vertices, corresponding to the partition of f t .  

2 .2  ISOMORPHISM BETWEEN fr AND THE MARKOV CHAIN. Let F + be the set 

of all one-sided infinite sequences (Dn)n>0 such that Dn E V~ and D ,  --~ D ,+I  

Yn E N, and let F~ be the set of all two-sided infinite sequences (Dn) ,ez .  We 

write a for the shift transformation in both spaces. (P~, or) is called the M a r k o v  

cha in  a s soc i a t ed  w i th  f t .  As the systems (Fr, o) are isomorphic for all r _> 1, 

we just write (F, 0) when we want to talk about one of them without referring 

to the partition associated with f~. 

We are going to build an isomorphism modulo countable sets between (I, fr)  

and (F +, 0), that  is a map ¢~: I\Af~ ~ F+\~4~ where Xr,  ~4~ are countable 

sets, ¢~ is bijective bimeasurable (in fact bicontinuous) and ¢~ o ft. = a o ¢,.. 

Define 

Pr  ={A-k~x~,A-k~yn: 1 < k < n} U {t~: 1 <_ n,0 < i < M~} 

U {A-'~: 1 _< n} U {0, 1/2,1,4} 

and let iV'7. -- Un>o f~-n(7)~) which is countable. We have f~(Af~) = Aft and 

f~(I\A#~) = I\7V'~. I f x  E I \ P r  then there is a unique D E V~ such that x E D (in 

fact x E Int (D)). Hence if x E I\Afr, for every n > 0 there is a unique Dn E V 

such that f ~ ( x )  E Dn.  Moreover (Dn)n>_o E F +. We define 

¢~: I \N~ > F + 

x ~-~ (D,~)n>_o. 

This application satisfies Cr o f~(x)  = a o Cr(X). 

For any (Dn)~_>0 E F +, the set J - Nn>of~ -n (Dn)  is a compact interval 

because fr  is monotone on each Dn. The map fr  is mixing (Proposition 1.13) 
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and f n ( j )  C Dn, hence J is necessarily reduced to a single point {x}. We define 

Cr: F + ~ I 

(Dn)n>o ~ x. 

Let M r  = ¢~-l(Afr). The application Cr, restricted to F + \ M r ,  is the inverse 

of Cr. Moreover, both Cr and Cr are continuous. Indeed, choose x0 E I\A/'r 

and write (Dn)n>o = Cr(xo) and Jn = A~_0f~-k(Dk). The diameters of the 

compact intervals J~ tend to 0, the point Xo belongs to Int (Jn) for every n, and 

for every x E J,~\JV'r the sequence Cr(x) begins with (Do , . . . ,D~) .  Hence Cr 

is continuous. Inversely, fix 7o = (Dn)~>0 E F + \ M r ,  then for every sequence 

7 C F + \ M r  beginning with (Do, . . .  ,D~) the point ¢r(7)  belongs to J~ which is 

an arbitrarily small neighbourhood of ¢r(7o). Hence Cr is continuous too. 

Now, we are going to show that M r  is countable. It is sufficient to show that 

¢~-1(x) is finite for any x E JV'r. For any y C I there are at most two elements of 

V~ containing y. Let x C Aft. If there is a k such that f~(x) = 0 then ¢~-1(x) = 0. 

If there is a k such that fk(x)  = 4 then ¢ -1(x)  is finite because 4-1(4)  contains 

only the constant sequence of symbol [yl, 4]. Otherwise there exist k, n such that  

f~(x)  = x ,  or f~(x) = y~. Thus it is sufficient to focus on the points x= and y,~. 

We begin with x,~. The intervals Co = [y~+~, xn] and Do = [x,~, t~] are the 

only two elements of Vr containing xn. If we try to build (Ck)k>_O and (Dk)k>_O 
which are elements of ¢~-i(x,~), we see that  there are only two possibilities, which 

are cycles, namely: 

• Co = [Yn+l,  Xn] --+ C1 : [A-nryn+l ,  A -nrxn]  - + " "  -'+ Cn+l  =- Co ---+.. ". 

• Do  = [x~, t~] --+ D1 = [A-'~x,~,  A - ~ y , ~ ]  --+ " "  -+ D ~ + I  = Do -+-" ". 

Hence, Card (4 :1  (x,~)) = 2. 

The situation is the same for y,~,n > 2, with two slightly different cycles, 

namely: 
t n • Co : [ Mn-1,  Yn] ~ [ ~ - n r x n ,  ~ -nryn]  "-+''" --+ CnA-1 = Co --} '"  ". 

• Do = [y~, x,~_l] -~ [A-~ryn, A -('~-l)r] --+ "'" ~ Dn+I = Do -+ ' "  ". 

A quick look at the map fr  gives the last two cycles for Yl. 

Consequently, Card ( ¢ r l ( x ) )  < +oc for every x e Aft, A4r is countable, and 

the map Cr: I\Afr ~ F+\A/[~ is an isomorphism modulo countable sets. 

¢r transforms any invariant measure that does not charge Aft into an invariant 

measure that does not charge f14~, and inversely. A measure supported by Aft or 

~4r is of zero entropy and the metric entropy # ~-~ h ,  is affine (see, e.g., [11]), 

thus htop(fr) = h(F +, a), where 

+ h(F +, a) = sup{hg: # a-invariant measure on F~ }, 
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and Cr establishes a bijection between the sets of maximal measures. 

On the other hand, h(F +, a) -- h(Fr, a) and there is a bijection between the 

maximal measures of (F +, a) and those of (Fr, a), because the latter is the natural 

extension of the former (see, e.g., [19]). Recall that  all systems (Fr, a) are iden- 

tical and (F, a) represents equally one of them. Hence the question of existence 

of maximal measure for (I, f~) can be studied by looking at (F, a). 

PROPOSITION 2.1: htov(f~) = h(F,a)  and (I, f~) admits a maximal measure if  

and only if  (F, a) admits one. 

2.3 NON-EXISTENCE OF MAXIMAL MEASURE. Following the terminology of 

Vere-Jones [23] a transitive Markov chain is either transient, positive recurrent or 

null recurrent. According to a result of Gurevi~ [14], a transitive Markov chain 

has a maximal measure if and only if its graph is positive recurrent. We do not 

give the definitions of transience, positive recurrence and null recurrence because 

we will only need a criterion due to Salama (Theorem 2.1(i) in [22]), which is 

stated below. 

If H is a (strongly) connected directed graph and (FH, ~) is the associated 

Markov chain, i.e., the set of all sequences (h~)nez with h,~ --+ h ,+ l  in H,  we 

define h(H) -- h(FH, a) = sup{h~: # a-invariant probability on FH}. 

THEOREM 2.2 (Gurevi~): Let H be a connected directed graph and (FH, a) be 

the associated Markov chain. I f  its entropy h(H) is finite then (FH, a) admits a 

maximal measure if  and only if  H is positive recurrent. In this case, the measure 

is unique. 

THEOREM 2.3 (Salama): Let H be a connected directed graph. I f  there exists 

a graph H' such that H C H' and h(H) = h(H')  then H is transient. 

Next, we compute h(Gr); then we show that G~ is transient, which is enough 

to conclude that f~ has no maximal measure by Proposition 2.1. As all graphs 

G~ are identical, it is sufficient to focus on G1. 

PROPOSITION 2.4: htop( fr  ) : h(G~) = logA. 

Proof: It is already known that htop(fr) = h(G~) = h(G1) by Proposition 2.1. 

A subset E C I is called (n, e)-separated for f l  if for any two distinct points 

x , y  in E there exists k, 0 <_ k < n, with [fk(x) -- f~(Y)l > e. Let s~( f l ,e )  be 

the maximal cardinality of an (n, e)-separated set. Then the topological entropy 

of f l  is given by the following formula (see, e.g., [11]): 

htop (f l)  = lim lira sup 1 log s ,  (fl ,  e). 
~ - ~ 0  n - ~ + o ¢  n 
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Let  E be an (n, e)-separated set of I of maximal  cardinality. As ] f~l ~ = A 

(Proposi t ion 1.13), we have ]f l (x)  - fl(Y)] _< AIx - Yl for all x, y E I.  If x, y are 

two distinct points of E ,  there exists k < n such tha t  Ilk(x) -- fk(y)l > e. But  

Ifka (x) - f~(Y)l <- ~ ] x  - Yi, hence Ix - y] >_ ~ - ~  and 

Card (E) = sn(fl ,  e) < 4(A"/e  + 1). 

Consequently,  htop(fl) = h(G1) _< log ~. 

Now, let H~ C G1 be the subgraph whose vertices are 

t n {[ i-1,  t~]: 1 < i < Mn} U {[A-kxn, A-kyn]: 1 < k < n}. 

The edges of H~ are all possible edges of G1 between two vertices, namely: 
• t i - a ,  Its tnlij__ + [A-nx~ ,A-ny,~] for 1 < i < Mn, 

• [~-kx~ ' A-ky~] _+ [A-k+lx~ ' A-k+ly~] for 2 < k < n, 

• [~ - - lXn , z~ - - l yn]  ---)" [tin_l,t n] for 1 < i < M , .  

The  graph Hn is represented in Figure 3. 

n • • • [ tM. . , , tM.  ] .. [~n Xn.%n y . ]  . n 

ii .............. / 

Figure 3. The  graph H . ;  a ~+1 is a full shift on the set of vertices 

inside the dots. 

The  system (H~, a n+l) is a full shift on Mn symbols, plus n fixed points, thus 

h(Hn, a n+l)  = logMn (see, e.g., [11, p. 111]) and h(Hn) = (logMn)/(n + 1). 

By definition of Mn, 
lim log M,~ _ log A. 

n ~ + ~  n + 1 

As H~ is a subgraph of G1, h(H~) < h(G1). Therefore h(G1) -- log A. | 
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PROPOSITION 2.5: The graph G1 is transient. 

Proo~ We are going to build a Markov map g, very similar to f l ,  such that  

I g'] ~ -< A and the Markov graph H associated with g expands strictly G1. 

Suppose g is already built. The same argument as in the proof of Proposition 

2.4 shows that h(H) < log I g'l oo _< logA. As G1 c H we have h(H) >_ h(G1), 

thus h(H) = h(G1) by Proposition 2.4. This is enough to conclude that  G1 is 

transient by Theorem 2.3. 

The map g: I -+ I is defined as g(x) = f l ( x )  for all x C I \ [x2,  Y2]. Let 

= + 2 a n d  = 

and choose s2: [0, M2] --+ [-m2,  1] satisfying Properties (3)-(8) except that M2 

and k2 are replaced respectively by M2 and k2. Then we define g on [x2, Y2] by 

y2 - x2.] J 

By Properties (5) and (6), g'(x2) = g'(Y2) = A-2M2k2 = 2A -1, thus g'(x2) = 

f[(x2), g'(Y2) = f~(Y2) and g is C 1. Moreover, for all x • [x2, Y2], 

19'(x)1 _< -< 

thus Ig'(x)l < A because M2 -- M2 + 2  = 2 [A/8] + 1 < A 2. Since I f~l oo -- A by 

Proposition 1.13, one concludes that I g'l oo _< A 

Define the Markov graph H associated with g as in Subsection 2.1, and denote 

by W the set of vertices of H.  Compared to V1, W has two additional vertices 

because f l  has M2 monotone pieces between x2 and Y2 and g has/142 + 2. If 

i(y2 - x2) 
t /  : X2 -[- 

M 2 + 2  

for 0 < i < M2 + 2, then it is not hard to check that the graph G1 is equal to 

g deprived of the vertices [tM2, tM2+l] and It-M2+1, t-M2+2] and all the edges that 

begin or end at one of them. Consequently G1 C H, which ends the proof. | 

Remark 2.6: We can see intuitively what happens for an fr-invariant measure 

when its entropy tends to log A. On each finite subgraph H,,, there is a measure 

of entropy ( logMn) / (n  + 1). This measure has a corresponding measure #,, on 

the interval, the support of which is contained in '~ -kr Uk=0[A x~, A-kry~] (in fact, 

the support of #~ is exactly the Cantor set of all points which never escape from 
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that  set). We have of course hz~ (fr)  ~ log A. But if we consider what happens 

near 0, we see that  #n converges to 60, the Dirac measure at 0, whose entropy is 

null. 

3. L o c a l  e n t r o p y  

We recall first some definitions due to Bowen [5] and then we define the local 

entropy. There exist different definitions of local entropy; we give here that  of 

Buzzi [9]. 

Definition 3.1: Let T: X --+ X be a continuous map on a compact metric space 

X.  

The B o w e n  ba l l  of radius r and order n, centered at x is 

B,~(x,r) = {y • X: d (Tk(y ) ,Tk (x ) )  < r, Yk -- 0 , . . . , n  - 1}. 

An ( ~ , n ) - s e p a r a t e d  se t  of Y c X is a subset E C Y such that  V y ¢ y'  

in E, 3 0 < k < n, d (Tk(y) ,Tk(y ' ) )  > s. The maximal cardinality of an (e,n)-  

separated set of Y is denoted by sn(T, e, Y) .  

Definition 3.2: The local  e n t r o p y  of T, htoc(T), is defined as 

1 
hloc(T) = lim lim lim sup - sup log sn(T, 5, B , ( x ,  e)). 

e- -}O~-~O n - - } ~  n x E X  

Remark  3.3: An (e,n)-cover of Y C X is a subset S c X such that  Y c 

~J~es Bn(x,  E). Some people use (e, n)-covers instead of (e, n)-separated sets: it 

leads to the same definition of the local entropy. 

Local entropy is interesting because it bounds the defect of upper semi- 

continuity of the metric entropy # ~ h~(f) .  On a compact Riemannian 

m-dimensional manifold, local entropy itself is bounded by m log R ( f ) / r ,  where 

R ( f )  is the spectral radius of the differential and r is the differential order. These 

results are stated by Buzzi [9] and follow works of Yomdin [24] and Newhouse 

[18]. In particular, they directly imply that  a C ~ map on a compact  Riemannian 

manifold always has a maximal  measure (this result can be found in Newhouse's 

work [18]). These results are given in the next two theorems; the second one is 

stated for interval maps only. 

THEOREM 3.4: Let T: X --+ X be a continuous map on a compact metric space. 

Assume that #n is a sequence of  T-invariant measures on X ,  converging to a 

measure #. Then 

l i m s u p h ~  (T) <_ h~(T) + h~oc(T). 
n---~ oo 
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THEOREM 3.5: Let f:  I --+ I be a C ~ map on a compact interval I ,  r > 1, and  

let R ( f )  = infk_>l ~/I ( fk) ' l  ~ -  Then the local entropy satisfies 

hloc(f) <_ l o g R ( f )  
r 

In our family of examples,  the local ent ropy can be computed  explicitly. 

PROPOSITION 3.6: For every n >_ 1 the local entropy of  f~ is 

hloc(h) -- log R(f~) _ log A. 
r 

Proo~ The  m a p  f~ is such tha t  I f¢l ~ -4 Ar (Proposi t ion 1.13) and 0 is a fixed 

point  with fr'(0) = A ~. Hence R(f~)  = A ~ and 

hloc(fr) <_ l ogR( f~)  _ log,~ 
r 

according to Theo rem 3.5. 

We are going to show the reverse inequality. 

Fix e > 0 and choose n such t ha t  1/2n 2 < e. Pu t  g0 = 1/2n2Mn. I f x  C [xn, Yn] 

satisfies f~+l(x)  • [x~, yn] then ] i f (x)  - f f ( x ~ ) l  < ~ for 0 < i < n + 1. We write 

~t n t ~3 for 1 < i < Mn. The length of each Ii is 80. I i  ~ [ i - - 1 '  i J  

Choose a finite sequence w -- ( w 0 , . . . , w p - 1 )  with 1 _< w~ < Mn. Thanks  to 

the i somorphism between (I ,  f~) and its Markov extension (Section 2), there is 

a point  x,~ • [x~,y , ]  wi th  f(~+l)i(x~) • I ~  for 0 < i < p - 1. Consider the set 

E~,v = {x~: w = (w0 , . . . ,  Wp-1), w~ odd}. The  cardinal i ty of E~,p is 

by L e m m a  1.4 (ii). I f  x • En,p then Ifk(x,~) - fk(x) l  < e for 0 < k < (n + 1)p. 

Moreover,  if x~,, x~o, are two dist inct  elements of En,p, then  there exists 0 < i < 

p - 1 with Iwi - w~] >_ 2, hence If(~+l)i(x~o) - f('~+l)i(x~o,)l > go. Consequently,  

E~,B is an ((n + 1)p, 5)-separated set of B(,~+~)v(x,~, e) for every 5 < ~0, and 

hloc(fr) >_ lira l imsup  logCard  (En,p) > logA. | 
n~+oo p--+oo (n + 1)p 

This  compu ta t i on  shows tha t  the bound l o g R ( f ) / r  is a sharp  one to esti- 

m a t e  the local entropy. Moreover,  we remarked  (Remark  2.6) t ha t  there exists 

a sequence of measures  #n converging to the Dirac measure  50, wi th  hun (fr) --~ 

htop(fr). Hence, the local ent ropy is exact ly  the defect of upper  semi-cont inui ty  

of the metr ic  en t ropy  in this case. 
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