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ABSTRACT

We construct a C” transformation of the interval (or the torus) which is
topologically mixing but has no invariant measure of maximal entropy.
Whereas the assumption of C® ensures existence of maximal measures for
an interval map, it shows we cannot weaken the smoothness assumption.
We also compute the local entropy of the example.

Introduction
We are interested in topological dynamical systems on the interval, that is systems
of the form f: I — I where f is at least continuous and I is a compact interval.
One can wonder whether such a system has maximal measures, i.e., invariant
measures of maximal entropy.

Hofbauer [15], [16] studied piecewise monotone maps, i.e., interval maps with
a finite number of monotone continuous pieces (the whole map is not necessarily
continuous). He proved in this case that the system admits a non-zero finite
number of maximal measures if its topological entropy is positive, and transitiv-
ity implies intrinsic ergodicity, that is existence of a unique maximal measure.
For this purpose, he built a Markov chain which is isomorphic modulo “small
sets” with the first system. Buzzi [9] generalized the construction of the Markov
extension to any continuous interval map. He showed that the same conclusions
as in the piecewise monotone case hold for C*° maps.
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One can wonder if these results are still valid under a weaker regularity assump-
tion, at least in the mixing case. Actually, if a topological dynamical system is
expansive and satisfies the specification property, then it has a unique maximal
measure (Bowen [6], [7]). Specification is a strong property on periodic points,
which must closely follow arbitrary pieces of orbits (see, e.g., [11] for more de-
tails). In the particular case of continuous interval maps, the system is never
expansive, but the mixing property implies the specification property (this result
is due to Blokh [4], see [10] for the proof). More recently, Ruelle [20] worked on
positively expansive maps satisfying specification.

In fact, transitivity is not much weaker than mixing since for any transitive
continuous interval map f: I — I either the map is mixing or there exist two
subintervals J, K such that JU K = I, JN K is reduced to a single point,
f(J) =K, f(K)=J and f?|;, f?|k are mixing [2, p. 59]. We also recall that
the topological entropy of any transitive continuous interval map is positive (it
is greater than or equal to (log2)/2 [3], see [1] for the proof) and, if in addition
the map is Lipschitz, it is finite (this classical result appears in the proof of
Proposition 2.4).

Gurevich and Zargaryan [12] built a continuous interval map with finite entropy
which is transitive (in fact mixing) and has no maximal measure. This map has
countably many intervals of monotonicity. The authors asked is this example can
be made smooth on the whole interval. Actually it cannot: the end points 0 and
1 are fixed points and the map is not monotone in a neighbourhood of 0 and 1;
on the other hand it is not hard to see that a C! transitive interval map must
have non-zero derivatives at fixed points, hence it is monotone near these points.

In [9, Appendix A] Buzzi built a C” interval map which has no transitive com-
ponent of maximal entropy, hence it has no maximal measure. He also sketched
without details the construction of a C" interval map with positive entropy which
admits no maximal measure and which is transitive after restriction to its unique
transitive component (which may be a Cantor set). His proof of non-existence of
any maximal measure relies on a result of Salama [21] whose proof turned out to
be false (see Theorem 2.3 and Errata in [22]). Nevertheless Buzzi’s proof can be
modified — using extension graphs instead of subgraphs, as we do in Subsection
2.3 — so0 as to be based on another theorem of Salama.

The aim of this article is to build for any integer » > 1 a C" mixing interval
map which has no maximal measure. Transitivity instead of mixing would be
enough, yet it is not more difficult to prove directly the mixing property. This
family of examples is inspired by Buzzi’s [9], the important addition is that the
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system is transitive on the whole interval. Non-existence of maximal measure
prevents the metric entropy from being an upper semi-continuous map on the set
of invariant measures. This is to be put in parallel with the result of Misiurewicz
and Szlenk [17], which shows that the topological entropy, considered as a map
on the set of C" interval transformations, is not upper semi-continuous for the
C" topology.

In Section 1, we define for any » > 1 a C" transformation of the interval [0, 4]
which is topologically mixing. In fact it is C°° everywhere except at one point.
The map f, is made of a countable number of monotone pieces and is Markov
with respect to a countable partition. Moreover, it can also be seen as a C"
transformation of the torus by identifying the two end points. In the next section,
we study the Markov chain associated with f,. and we conclude it has no maximal
measure, thanks to results of Gurevi¢ [13], [14] and Salama [22]. As there is an
isomorphism modulo countable sets between the two systems, the interval map
has no maximal measure either. In Section 3, we compute the local entropy of
our examples. Buzzi [9] showed that this quantity bounds the defect in upper
semi-continuity and he gave an estimate of it depending on the differential order
and the spectral radius of the derivative. Our examples show these bounds are
sharp since the two are realized. Moreover, it also equals the topological entropy.
It may be of some importance: we conjecture that the Markov extension admits
a maximal measure when the topological entropy is strictly greater than the local
entropy.

In addition to the problem of existence of maximal measure, one can ask the
question of uniqueness of such a measure. Recently, Buzzi [8] proved that, if
the interval transformation is C**® (i.e., the map is C! and its derivative is a-
Hoélder), then there is no measure of positive entropy on the non-Markov part
of the system. Since a transitive Markov chain admits at most one maximal
measure, a transitive C'*® transformation has a unique maximal measure if it
exists. For transitive non-smooth interval maps we still do not know if several
maximal measures can exist. It would imply that the topological entropy of the
critical points would be equal to the topological entropy of the whole map.

ACKNOWLEDGEMENT: [ am indebted to Jérome Buzzi for many discussions
which have led to the ideas of this paper.

1. Construction and proof of mixing property

In this section, we construct a family of C” maps f.: I — I for r > 1, where
I =[0,4]. We first give a general idea of their aspect (see Figure 2). Then we
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give some lemmas which will be useful to prove the mixing property. Finally, we
define f, by pieces and check some properties at each step. At the end of the
section, the maps f. are totally defined and are proved to be mixing.

1.1 GENERAL DESCRIPTION. Let A > 14 (log A will be the entropy of f,). The
map f, is increasing on [0,1/2] and decreasing on [1/2, 1]. Moreover, f,.(z) = A"z
for0<z < %/\“r, fr(o) = fr(l) =0, fr(1/2) =4.

Let z, = 1+ 1/n and y, = z, + 1/2n? for every n > 1, and let M, be
a sequence of odd numbers with (log M,,)/n — logA. We choose a family of
C* maps s,: [0, M,] — [-1,1] such that s, is nearly 2-periodic and has M,
oscillations; s,(0) = 0 and s,(M,,) =1 (see Figure 1).

Figure 1. The map s,.

Then we define f, on [Z,,ys] by

r(@)=27"" |2n + (Yn — Tn)sn (M,, L~ In )] .

Un — Tn

In this way, fr(Zn) = A Zn, fr(yn) = A"y, and f, oscillates M, times
between x,, and y, like s,. It is worth mentioning that z,, and y, are periodic
points with period n + 1, because f,. is linear of slope A™ on [0,y A~ 7).

On [Yn41,2n), fr is increasing.

Finally, f, is increasing on [y1,4], with f.(4) = 4. Figure 2 gives a general idea
of f,.
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Figure 2. The map f, (scale is not respected).

The map f, will be built to be mixing and C” on [0,4], and | f!| c = A".
Furthermore, the minimum of s,, will be chosen such that f.(z) = A"y, if z
is a local minimum of f, in |z,, yn[ in order to obtain a Markov map.

This brief description is sufficient to build the Markov chain associated with
fr and prove that f. has no maximal measure, which is done in Section 2. The
rest of this section, which may be skipped at a first reading, is devoted to prove
that maps satisfying these properties do exist.
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1.2 METHOD FOR THE PROOF OF MIXING PROPERTY. We recall the definition
of mixing for a topological dynamical system.

Definition 1.1: Let T: X — X be a continuous map where X is a compact
metric space. The system is (topologically) mixing, if for every non-empty open
sets U and V, there exists N > 0 such that for every n > N, T-"UNV # 0.

In our case, we will show that for any non-degenerate subinterval J C I, there
exists n > 0 such that f?(J) = I. So f¥(J) = I for every k > n and the
system is mixing. For this, we will show that, for some constant yo > 1, any
non-degenerate subinterval J satisfies one of the two following conditions:

(1) 3k > 0 such that |f¥(J)| > uo|J|, where |J| denotes the length of J,
or

(2) 3k > 0,3n > 1 such that either 0 € f¥(J) or Int (f¥(J)) contains z, or yn.

Then it will be enough to show that for any non-degenerate subinterval J
containing 0 or &, or ¥y, there is a k such that f*(J) = 1.

Lemma 1.3 says that an interval near a suitable extremum satisfies (1) or (2).
Lemma 1.2, which is trivial, says how an interval containing a repelling periodic
point behaves.

LEMMA 1.2: Let f: I — I where I is a compact interval, and let zy be a periodic
point of period p. Assume (fP)(x) > p > 1 for every = € [z, z1]. Then for every
T > zp there exists n > 0 such that f™([z0,z]) D [20, 21]-

LeEMMA 1.3: Let f: I — I be a C" map where I is a compact interval and let 2o
be an extremum such that z; = f*(z) is a periodic point of period p. Suppose
fE(x) = 21 + C(z — 20)® for |z — 20| < §, with C # 0 and a an even integer.
Let 2o = f¥(20 — &) = f*(20 + ). Suppose f?|,, ., is linear of slope p > 1, and
alzz — 21|/8 > po. Then for every non-degenerate interval J C [z9 — 6,20 + 6],
there exists n > 0 for which one of the following cases holds:

(@) 157D = polJ|-

(ii) 29 € Int (f*(J)).

Proof: Let J = [a,b] be an interval in {29 — 8,20 + 0] with a < b. If 20 € J
then f¥(J) = [21,y| for some y. The hypotheses imply that f?(z3) > 22, hence
25 cannot be an end point of I and one can choose 1 < ' < p and z3 > 29 such
that (fP)'(z) > ¢ for all z € [z1,23]. According to Lemma 1.2 there exists n
such that f*(J) D [21, z3), thus 22 € Int (f(J)), which is (ii).

Now assume that 29 € J. We restrict to the case C > 0and 2o < a < b < 2p+6.
Let J' = f*(J) = [@',¥] Cl21,22] and g = fP. The point 2; is fixed for g and g
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is linear of slope i > 1 on {21, 2], so the map g can be iterated on J' as long as
g™ (b)) < z9. Let m be the first integer satisfying g™ (b') > 2z3. Then there are
two cases:
o g™ (a') < 2z < g™(b'), which implies (ii) with n = mp + k.
o 2 < g™(d) < g™(b').
In this case, as (f*)’ is positive and increasing on {20, 29 + 6] one gets [J/| >
aC(a — 29)*"|J| and

[f™P ()] 2 paCla — 20)* 7).

But 9™(a') — 21 = p™(a’ — 21) > 22 — 21, 50

m Z2—21: 22— 21
“ad -z Cla—20)®
wd 22— =l ;. alza = xl
m alzg — 2z jzg — 2
LR > ]a2-zot1 HE 25 Y > pold.  w

We add a lemma which will be useful for some estimates.

LEMMA 1.4: Let A\ > 8 and [-] refer to the entire part of a number. Then for all

(i) &>
(i) g <2[3] - 1<%
(i) 2[25] -1>A1-3

Proof: (i) is obtained by studying the function z — A®~1 — 22,

For the first inequality of (i), we write

" A" AT A
v A B AU (LRI [P
[ZnQ] Zonz T (2n2 3) ~ 2n?
thanks to (i). The second inequality is obvious.
(iii) comes from 2 [25] — 1> 27 — 3 and from (i). |

1.3 CONSTRUCTION OF f, ON [l,3]. Recall that A > 14, f.(1) = 0, z, =
1+1/n and y, = =, +1/2n? for n > 1; in particular y; = % In this subsection,
we define f, on [1,y;] with more details. For this purpose, we define f, on each
[Zn,yn) and then on each [y,41,z,]. At each step, we check that the various
pieces can be glued together in a C*° way and |f/(z)| < X" for z € [1,1]. In
addition, we show that f, is C" on the right of 1. Finally, we focus on the mixing
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property. The map f, is not totally defined yet, but at this stage we only need
to know that f,(z) = A"z for 0 <z < 3A™" and /() = 4 in order to prove that
any non degenerate subinterval of [1,y,] satisfies (1) or (2) with o = 3. Then
we show that for an open interval J containing z, or y, there is a k satisfying
FFI) =[0,4].
1.3.1 On the subintervals [Tn,yn]. Set My, =2 [A"/2n?] — 1 (where [-] denotes
the entire part), m, =1—1/(n+1)2, 6§ = A", C = 1/462 and k, = 2\"/M,,.
First, we choose a sequence of C™ functions s,: [0, M,,] — [—my,, 1] satisfying:
(3) 5n(0) = 0, s,(M,) = 1, sy, is increasing on each [2k,2k +1] (0 < k <
(M, —1)/2), s, is decreasing on each [2k+1,2k+2] (0 < k < (M, —3)/2).
(4) sn(z) =1~C(z—a)? for [z—a| < 4 if a is a local maximum of s,,, a # M,,,
and s,(z) = —m,, + C(z — b)? for |z - b] < § if b is a local minimum of
Sn, b# 0.

(5) sn(z) =kn(z — M,)+1for M, -6 <z < M,.

(6) sn(z) = knz for z € [0, 4].

(7) Vk > 1, 3Ag, Vo > 1, | 89| o < Ay.

(8) | 81| oo <A™ and |} (z)| > min{1/2,k,} if |z — d| > ¢ for all local extrema

d €]0, M,,[.

Property (7) can be fulfilled because m,, and k, are bounded (3/4 < m,, <1,
k, < A") and the maps s, have a 2-periodic looking.

If d is a local extremum in |0, M,,[, then |s,(d—8)—s,(d)] = |sn(d+8)—s,(d)| =
1/4; moreover [$,(8) — s,(0)| < 1/4 and |8,(M,, — &) — s, (M,)| < 1/4. Thus if
d and d’ are two successive extrema in [0, M,,], the absolute value of the average
slope between d+ 4 and d’ —§ is at least (m,, +1/2)/(1—26) > 1 and is less than
2. Since |s,(d + 8)| = |s;,(d — §)] = A" /2 for any extremum d €]0, M,,[, Property
(8) can be fulfilled.

Secondly, recall that f, is defined for = € [z, yn] by

r—x
(X)) = A7 2+ (Yo — Tn)sn | My n)]
e e
Now, we look at the C™ character of f,. near 1. The definition of f, gives
—nr afk
_ATTM, s(k)
(yn - -'L'n)k—l "

where f,Sk) (z,) and f,gk)(yn) are to be understood as left (resp. right) derivatives
at this stage.
Since M,, < A"/n?, Property (7) leads to

Ifr(k)(x)l < /\—n(r—k)n—22k—1Ak.

1P(@) =

(Mn T n ) for z € [Tn, yn),

Yn — Tn
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One has A; = A" by (8), thus |f'(z)| < A". Moreover, for 0 < k <,

1f7(_k)(:1;)‘ —0 whenz—1, z¢ U[wmyn]-
n>1

Notice that the main factor in this estimate is A™*("=%). If k > r, the k-th
derivative f,Sk) does not tend to zero any longer and it can be shown that f,
cannot be C™*! at point 1.

As f.(z) = Nz for z € [0,y1A7"], the (n + 1)-th iterate of the map on [z,, Yn)
is given by fotl(z) = A" f.(z).

Notice that m,, is chosen such that min{f?**!(z): z € [Tn, Y]} = Yn+1. More-
over f"*(z,) = z, and 7 (yn) = Yn.

We sum up the previous results in two lemmas, the first one is about derivatives
and the second summarizes the behaviour of f, on [z, ¥n]-

LEMMA 1.5:
o |fi(x)| <A for x € [Ty, yn)-
olim . fP@)=0fr0<k<r.

z€ nZI[zn,un]

LEMMA 1.6: Let t? =z, + i(yn — zp) /M, fori =0,..., M,,. Then
e [, is monotone on [t 4,t?], 1 < i < M,.

® fr(t:l) = A—nryn_i_]_ ifiis even, ) # 0, and fr(xn) — A-n‘!‘xn‘
o fr(t?) = A"y, ifi is odd.

1.3.2 On the subintervals [yp¢1,%n]. We define

n+2
2n(n+ 1)2Muyi1kny1

Wn = Ynt1 +

We have wn €]yn+1,Zn[. On [yni1,wn], we define f, to be affine of slope
AU AL kg (recall that fr(yng1) = A~y o is already defined).
Because of this definition f, is affine (thus C*) in a neighbourhood of ypn4;.
Moreover

+2 1
— \—(n+1)r PR G L B S RS D
fr(wy) Yn+1 + In(n + 1) A + nt’

80 fr(wy) = A"tV g and f7+2(w,) = ©,. As we are going to extend f, in a
C™ way on [wy, z,], we will have

fi(xn) = 2\~ (=D fi(wy) =227, and f,(k)(xn) = fr(k)(wn) =0 for k > 2.
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Set hyp = fr(zn) — fr(wy) and I, = z, — w,. We compute upper and lower
bounds for h, and [,,. First

9
By = A~ <x,, A gt — ,\—T—i‘i—) <o

2n(n +1)2
We have
nt2 _3 forn=1
2n(n+1)2 8 B
and 2
n+2 + 2n 1 1
< — < - i >2
2n{n + 1)2 2n2(n+ )2~ 2n2 — 8 orn
Since z, > 1,¥nt+1 < Y2 = % and (n + 2)/2n(n+ 1)? for all n > 1, one

gets

by > ATT(1=2077) > gA—"r.

For [, one has

TS B 1 n+2
) n+1l 2(n+1)2 2n(n+1)2My1kni

n+2 1- _1_
2n(n+1) 247 )

As (n+2)/2n(n+1)2 < 2, one gets I, < 3 too. Moreover

n+2 1
2n(n+1)2 = 2(n+1)2

and 1/2X" < 1 thus I, > 1/4(n + 1)%. Finally we obtain the inequalities

6 1 3
2AT < by < 207 <<
70 =Sin s and mrmp Shsg

We normalize f, on [wy,,z,] as follows: we define ¢,: [0,1] — [0, 1] by
(pn(.%') = h;l[f,-(wn + ln-”;) - fr(wn)]-

The aim of this normalization is to check that the sequence ¢, can be chosen
with uniformly bounded k-th derivatives then to come back to f, and show that
fr is C" at the right of 1. We want to have

@ (1) = 2h7 U A0l (0) = 2R AT

and
e 0) =P (1) =0 fork>2,
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thus ¢}, (1) < A" and ¢},(0) < . Consequently, it is possible to build a se-
quence of functions ¢, satisfying these conditions and the following additional
conditions:

Vk > 1,3Bg, ¥ > 1, | 9] o < By

and

2
Vo € [0,1], 5¢4(0) < ¢l(@) < N

By definition of ¢,,, the derivatives of f,. are given by

FB(@) = halko®) (x_:w_

) <A (n 4+ 1)%*2%*BL for w, <z < 7,
n
hence for every k > 0

®B)(z) >0 whenz—1, z¢ U [Un+1s Tnl-

n>1
Moreover, $A™"" < fl(z) < A"hpl;! for every = € [wy, 2] and
8(n + 1)?
anr

The next lemma recalls the behaviour of f, on [yni1, Zn)-

hol7t < <1 by Lemma 1.4 (i).

LEMMA 1.7:

o AT < fl(z) < AT for T € [Yny1, Tn)-

o frl(wy) =A"(+Drg

e lim 21 r(k)(m) =0for0<k<r.

z€ nZ][yn+1~In]

1.8.3 Beginning of the proof of the mizing property. We show that any non-
degenerate subinterval J C {1, y1] satisfies (1) or (2) with po = %. It is sufficient
to consider J C [Tn,Yn] OF J C [Ynt1,Tn)-

First, we look at [yn41,Zn). For z € [yni1,2n), [FTHz) = A f.(z) and the
derivative of f, satisfies f/(z) > $A~"" by Lemma 1.7, so |fr+1(J)| > §|J| if
JC [y'n-i-la x"}

Now, we focus on [z,,y]. According to Property (8), s, (z) > min{k,,1/2}
for all z € [M,, — 1+ 4, My], thus

(F7Y) (2) > min{Moka, My /2} > 2 forall z € [yn Sl @120 ]

Because of Property (4), s,(M, —1+46) = -m, +1/4 <0, thus

PEYR IS N
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Let tn = (yn — Zn)/A"My; then according to Lemma 1.2, there exists an integer
a such that fr("+1)a([yn —tn,Yn]) D [Zn, Yn), s0 there exists z € [y, — tn, yu[ With
FHD2(4) = ,,. Because of the choice of t, and Property (5), f**! is affine of
slope k, M,, = 2A" on [y, — t,, yn]. Let k > 0 be the maximal integer ¢ such that
Ny, — 2) < tn. Then 2, = yp, — A"F(y,, — 2) belongs to (Y — tn, Yn — tn/2X7]
and fr(”H)"" (2p) = 2y, if 0y = @ + k.

Set
5 = (yn - zn)(yn - xn)
n CM,?L bl

and let a be a local maximum of f, on |z, ya[. If |t| < &y, then

M.t |?

Un — Tn

Un — 2n 1 9
< < 6%,
S Clyn —zn) S CM =

Now we check the hypotheses of Lemima 1.3 for the extremum a:
b f;‘+1(a) = yn and f:H-l(yn) = Yn-
o it (a+t) = yo— C(Mpnt)?/(yn — z») if |t| < §,, (because of Property (4)).
o frtl(a—4,) = frtl(a+6n) = 2n.
e fP*l s linear on [2,,yy), with a slope kn, M, > 2.

. ﬂz"a—:y"—' =2 CM; n(f’;:z") >2 2)‘,0(2{‘2_“;“) = 2y/%a and the last quantity
is greater than 2 because M, > A — 3 by Lemma 1.4 (iii) and XA > 14.
Consequently, we can apply Lemma 1.3 at this maximum: for any non-degenerate
subinterval J C [a—8,,a+0,], there exists k such that either z, € Int (f¥(J)) or
|FE(D)) > 2]J]. Since fi*T* (2,) = z,, and f"TP*" is a local homeomorphism
in a neighbourhood of 2, if 2, € Int (f¥(J)) then z,, € Int ( fi e )) with &' =
k+(n+1)an.

Set

5 = {(Wn = Ynt1)(Yn — Tn)
" CM?

and let b be a local minimum of f, on |z, ys!. If |t| < &/, then

M.t

Yn — Tn

Wy — Ynsl 2n(n +2) 2 2
= < —= < é°.
T Cyn —xn) (n+1)223r = 37 —

We check the hypotheses of Lemma 1.3 for the extremum b:
o fPH0) = yuyr and f2(Yns1) = Y-
o fPH(b+1t) = yny1 + C(Mnt)?/(yn — zn) if |t| < 6;, (because of Property
(4))-

o frti(b—4)) = frri(b+68)) = w, and P2 (w,) = zp,.
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e f*2 is linear on [Yni1,wn] of slope My 1kny1 > 2.
o 2lyni1 - wal/8, > 2
To prove the last point, define

o = (¥n=¥nn 2 _n(n+2)M2N
" s ~ 8(n+1)2

n

One has M,, > A — 3 (Lemma 1.4 (iii}), A > 14 and

2n(n+2) (+1)2+n2+2n-1
(12 mt1)? > b
thus Cp, > (14 x 11%)/16 > 1.

Hence we can apply Lemma 1.3 to this extremum: for any non-degenerate
subinterval J C [b— 8/,,b+ 6.], there exists k such that either z,, € Int (f¥(J))
or [fF(J)| 2 2|J].

If |z — d| > 8|yn — zn|/M,, for all local extrema d €]z, yn[, then |(f7+) (z)] >
min{2A", M, /2} > 2 according to Property (8). If a €]z, yn[ is a local maximum
and 0, < |z — a| < 8|yn — Tn|/Mp, then

n ntlys 2M2C6,
(Y @ 2N (a+8n)| = =—="—= 2 /My/2.

n n

If b €]zn, ynl is a local minimum and &), < [z — b] < 8|yn — zn|/Mn, then

2MEC8, _ \opp My [2n(n +2)

) @)= 1Y ey = Z2 2 T

> \/2M,, /2.
Consequently, |(f?*1)/(z)| > 2 if for all local maxima a, |z — a| > d,, and for all
local minima b, |z — b| > &..

Finally, if J is a non-degenerate subinterval of [z, y,], there exists k such that
either |fF(J)| > 2|J| or Int (f¥(J)) contains z,. Together with the previous
result on [y,41,Z,] it gives:

LEMMA 1.8: If J is a non-degenerate subinterval of [1, y1], there exist k > 0 and
n > 1 such that either |f¥(J)| > 4|J| or z,, € Int (f¥(J)) or yn € Int (F5(J)).

The point z,, is periodic of period n + 1, and (f?*!)'(z) > 2 for z, < z <
Tn+ (Yn —Tpn)/2M,,. In this situation, we can apply Lemma 1.2. For any interval
J = [z, ] With > x,, there exists k such that f¥(J) D [z,, Tn+(yn—2n)/2My).
But

-z — -z
ek (a:n+yn n>2$n+y—"ﬂ—/ln—n and frt! (xn+y"Mn "):yn.
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Hence f,k+2("+1)(J) D [Zn, yal.

We do the same thing for y,: for any interval J = [y, y,] with y < y, there
exists k such that f5(J) D [zn, yn)-

Moreover

P2 ([@n, yal) = £ (Ynr1, ¥n)) = N ynrr, 9] D [1/2,1],
so f2 ("H)“([zmyn]) = [0,4]. This leads to the next lemma.

LEMMA 1.9: IfJ is an open subinterval with z,, € J ory, € J, then there exists
k > 0 such that f¥(J) = [0,4].

1.4 CONSTRUCTION OF f,. ON [0,1] AND {y;,4] AND END OF THE PROOF OF THE
MIXING PROPERTY. Recall that f.(z) = A"z for 0 < z < g)\" and d = A",
We define f, near the points 1/2, 1 and 4 as follows:

e fr(z) =4 - Co(z —1/2)% for |z — 1/2| < 8, with Cp = 3571

o fi(x)=Ci(z—1)* for 1 - <z <1, with @y = 2r and C; = 17,

o f(z)=4+X(z—4)ford—326<x <4

The definition of f,. on the left of 1, together with Lemmas 1.5 and 1.7, leads

to the next lemma.

LEMMA 1.10: f. is C" in a neighbourhood of 1.

Now we complete the map such that the pieces are glued together in a C*°
way (except at 1 where f,. is only C"). As f/(1/2—46) = 3 and

£r(1/2-68) - £(39) _3-3x

= € [2,6],

(1/2—6)— 36 1—-7A" 2,6]
the map can be chosen such that 3/2 < f/(z) < A" for every « € [26, 2 —04]. In the
same way, it is possible to have —~A" < f/(x) < —3/2 for every z € [1/2+6,1—¢]

because f/(1/2+6) = -3, fl(1—6) = —2r and

L(/2+8) — f(1-8) 8—5xT

1/2-26 BT [7,12].

Finally, f/(y1) = 2 because of the earlier construction of f, on [z1,y1] (see sub-
section 1.3.1) and

fr(4— %6) - fr(p1) _

4—4x" 8
@-3)-u 3-p 3

Hence it is possible to have 3 < f/(z) < A" foryy <z < 4.
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Consequently, 3 < |f/(z)| < A"ifz € [0,5 ~6]U[3 + 6,1 — 6] U [y1,4].

A quick check shows that Lemma 1.3 can be applied to the two extrema 1/2
and 1 (we apply it only to the left of 1). For 25 = 1, the repulsive periodic point
is z; = 0, the interval [21, 2] is [0, A™"], and the growth factor is gé/d = 2r. For
2o = 1/2, the repulsive periodic point is z; = 4, the interval [21, 23] is [4— %/\*T, 4],
and the growth factor is 26/3A" = 3.

Since f2(A™") = 0 and f.(4 — 3A~") = y;, for any non-degenerate interval
J C [0,1]Uys, 4] there exists k such that either | f¥(J)| > 2|J} or f¥(J) contains
one of the points 0, 4, y;.

LEMMA 1.11: If J is a non-degenerate subinterval of [0,1] U [y1,4], there
exists k > 0 such that either |fF(J)| > 2|J| or 0 € fF(J) or 4 € f¥(J) or
11 € Int (ff(]))

Since f2([0,A~"]) = [0,4] and f3([4 — 3A7",4]) = f2([11,4]) = [0,4], applying
Lemma 1.2 we obtain the next lemma.

LeMMA 1.12: If J is a non-degenerate subinterval containing either 0 or 4, then
there exists k > 0 such that f¥(J) = [0,4].

The construction of f,: [0,4] — [0,4] is now finished. The map is C" on [0, 4]
(and is C* on [0,4]\{1}), and | f!| o = A". Furthermore, if we put together
Lemmas 1.8, 1.9, 1.11 and 1.12, we see that for any non-degenerate subinterval
J C [0, 4], there exists k > 0 such f¥(J) = [0,4].

ProprosiTION 1.13: f,: I — I is C", mixing and | f]| oo = A".

Remark 1.14: If we identify the two end points 0 and 4, the map f, can be seen
as a mixing C" map on the torus, since fr(k)(O) = f,gk)(/l) for every k > 1.

2. Markov chain associated with f,

We show that f. is a Markov map for a sunitable countable partition. The as-
sociated Markov chain reflects almost all topological properties of the system

I, fr).

2.1 DEFINITION OF THE GRAPH. We make explicit the Markov partition V,
and the associated graph G,.
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Let t§ =z, <] <--- < i}y = yn be the local extrema of f, on [Zn, yn). Let

Ve ={[t?_,t':1<n,1<i< M,}
U{A %z, A7y, ) 1 <k <n}
U{[r~ ’"ynﬂ A Fe]:1<n,0<k <n}
U{A™ g, A" 2 <}
U{[A™"y1,1/2],[1/2,1], [y1, 4]}-
The elements of V,. have pairwise disjoint interior and their union is ]0,4]. We
check that the map f. is monotone on each element of V, and, if J € V., then
fr(J) is a union of elements of V,. U {0}.
e By Lemma 1.6, f, is monotone on [t? ,t?], fr([t7,t7]) = A" Zn, A" yy)
and fr([tz i t2]) = A Yng1, A” nrmn] U [)‘ " ’/\—nryn] if2<i< M.
¢ By Lemmas 1.6 and 1.7, f, is increasing on [yn41,2,] for all n > 1 and

Frllna1,2a]) = NPTy, AT )

— [/\—(n+1)ryn+1, )\—nr] U U [)\—nrmk+1, )\—nryk+1]
k>n

U [)\_""ykﬂ, /\—nr.’L'k].
e Since f.(z) = Xz for z € [0, A""y;] we have
—fr(AF 2, ARy = A EDrg, ARy ] for 1<k <m

and this interval is an element of V;. except [Zn,yn] = UM [t2,, 7], which
is a union of elements of V..

~Fr (AN g, AR, ]) = ATy AT ED ] for 1<k <.

ey AT = A g, A
— [/\—nryn+1’)\—nr$n] U [/\_anL‘n, )\—nryn]
U [/\—nrym /\—(n—l)r]
forn > 1.

e f, is monotone on [0,1/2], [1/2,1] and [y1, 4] (see Subsection 1.4) and
—fr(['\_ryl’ 1/2]) = [yls 4]

~£((1/2,1) =[0,4] = {o}u |J /.

JEV,
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_fr([ylv 4]) = [’\_Tylv 4]

=Ty, 1/200[1/2, 10U [, 41U [ 941, 74

v U )

1<n
1<i< My,

We define the directed graph G, as follows: the set of vertices of G, is V,. and
there is an arrow from J to K if and only if K C f.(J). The decomposition
above of f,.(J) into elements of V,. for all J € V,. gives an exhaustive description
of the arrows in G,.

Notice that the graphs G, are identical for all » > 1. The only difference is
the name of the vertices, corresponding to the partition of f,.

2.2 [SOMORPHISM BETWEEN f, AND THE MARKOV CHAIN. Let I'} be the set
of all one-sided infinite sequences (Dy)n>0 such that D, € V, and D, — Dy41
Vn € N, and let T, be the set of all two-sided infinite sequences (Dy,)necz. We
write o for the shift transformation in both spaces. (I, o) is called the Markov
chain associated with f,. As the systems (T, ¢) are isomorphic for all r > 1,
we just write (T, o) when we want to talk about one of them without referring
to the partition associated with f,.

We are going to build an isomorphism modulo countable sets between (I, f,)
and (I}, o), that is a map ¢,: I\N, — ;)\ M, where N,., M, are countable
sets, ¢ is bijective bimeasurable (in fact bicontinuous) and ¢, o fr = 0 o ¢,..

Define

Pr={ A"z, Ay 1 <k <njU{t?:1<n,0<i< M}
U{A ™1 <n}u{0,1/2,1,4)

and let N, = U,>o fr™(Pr) which is countable. We have f.(N,) = N, and
fr(I\N;) = I\W,.. If z € I\P, then there is a unique D € V; such that z € D (in
fact z € Int (D)). Hence if x € I\WN,, for every n > 0 there is a unique D,, € V
such that f*(z) € Dy. Moreover (Dy)n>0 € I';}. We define

¢r: NN, — T}
T —> (Dn)nZO-

This application satisfies ¢, o f.(z) = 7 0 ¢ (2).
For any (Dn)n>o € T, the set J = (50 /7 "(Dys) is a compact interval
because f, is monotone on each /. The map f, is mixing (Proposition 1.13)
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and f"(J) C D,, hence J is necessarily reduced to a single point {z}. We define

Y TH — T

(Dn)nZQ — .

Let M, = ¢ '(N;). The application ., restricted to I';"\M,, is the inverse
of ¢.. Moreover, both ¢, and %, are continuous. Indeed, choose o € I\N,
and write (Dy)n>0 = ¢r(z0) and Jp = i /i *(Dk). The diameters of the
compact intervals J,, tend to 0, the point zg belongs to Int (J,,) for every n, and
for every z € J,\N, the sequence ¢.(z) begins with (Dy,...,D,). Hence ¢,
is continuous. Inversely, fix vo = (Dn)n>0 € I';t\M,, then for every sequence
v € T'\ M, beginning with (D, ..., D,) the point ¢, (y) belongs to J,, which is
an arbitrarily small neighbourhood of ¥, (o). Hence v, is continuous too.

Now, we are going to show that M, is countable. It is sufficient to show that
¥ 1(z) is finite for any = € N,.. For any y € I there are at most two elements of
V, containing y. Let = € N;. If there is a k such that f¥(z) = 0 then ¢ 1(z) = 0.
If there is a k such that f¥(z) = 4 then 1~ (z) is finite because ¢ ~!(4) contains
only the constant sequence of symbol [y1, 4]. Otherwise there exist k, n such that
f¥(z) = 2, or f¥(x) = yn. Thus it is sufficient to focus on the points z, and y,.

We begin with z,. The intervals Cy = [ynt1,2n] and Dy = [z,,t}] are the
only two elements of V; containing z,. If we try to build (Ck)x>0 and (Dg)x>0
which are elements of 1,~1(z,,), we see that there are only two possibilities, which
are cycles, namely:

o Cy = [yn+1,xn] - C = [/\—nryn_H, )\_"T.Z'n] == C1=Ch— -
e Dy =[2,,t7] > Dy =A™ 2y, A" yy] = - > Dpy1 =Dy —---.
Hence, Card (¢, }(z,)) = 2.

The situation is the same for y,,n > 2, with two slightly different cycles,
namely:

o Cy = [t"j,fn_l,yn] =S AT, Ay 2 - 9 Cppr =Co = -+
® Do =[yn, Tn1] = ANy, A"V . 5 Dy = Do — -

A quick look at the map f, gives the last two cycles for y;.

Consequently, Card (y;}(z)) < +oc for every & € N, M, is countable, and
the map ¢,: I\N,, — I';}\ M, is an isomorphism modulo countable sets.

¢, transforms any invariant measure that does not charge A, into an invariant
measure that does not charge M,., and inversely. A measure supported by A, or
M, is of zero entropy and the metric entropy p + h, is affine (see, e.g., [11]),
thus hsep(fr) = KT}, o), where

h(T}, o) = sup{h,: p o-invariant measure on I';},
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and ¢, establishes a bijection between the sets of maximal measures.

On the other hand, h([';},0) = h([,,0) and there is a bijection between the
maximal measures of (I}, o) and those of (I';, ), because the latter is the natural
extension of the former (see, e.g., [19]). Recall that all systems (I, o) are iden-
tical and (T, o) represents equally one of them. Hence the question of existence
of maximal measure for (I, f.) can be studied by looking at (T, o).

PROPOSITION 2.1: hsop(fr) = h(I',0) and (I, f,) admits a maximal measure if
and only if (T', o) admits one.

2.3 NON-EXISTENCE OF MAXIMAL MEASURE. Following the terminology of
Vere-Jones [23] a transitive Markov chain is either transient, positive recurrent or
null recurrent. According to a result of Gurevi¢ [14], a transitive Markov chain
has a maximal measure if and only if its graph is positive recurrent. We do not
give the definitions of transience, positive recurrence and null recurrence because
we will only need a criterion due to Salama (Theorem 2.1(i) in [22]), which is
stated below.

If H is a (strongly) connected directed graph and (I'gy,0) is the associated
Markov chain, i.e., the set of all sequences (hn)nez With hy, — hyyq in H, we
define h(H) = h('y, 0) = sup{h,: p o-invariant probability on 'y }.

THEOREM 2.2 (Gurevit): Let H be a connected directed graph and (I'y, o) be
the associated Markov chain. If its entropy h(H) is finite then (I'g, o) admits a
maximal measure if and only if H is positive recurrent. In this case, the measure
is unique.

THEOREM 2.3 (Salama): Let H be a connected directed graph. If there exists
a graph H' such that H C H' and h{H) = h(H') then H is transient.

Next, we compute h{G,); then we show that G, is transient, which is enough
to conclude that f, has no maximal measure by Proposition 2.1. As all graphs
G, are identical, it is sufficient to focus on G;.

PROPOSITION 2.4: hyop(fr) = R(G,) = log .

Proof: It is already known that hiop(fr) = R(G,) = h(G,) by Proposition 2.1.
A subset E C I is called (n,¢)-separated for fy if for any two distinct points
z,y in E there exists k, 0 < k < n, with |[f¥(z) — fF(y)| > €. Let s.(f1,¢) be
the maximal cardinality of an (n, £)-separated set. Then the topological entropy
of fi is given by the following formula (see, e.g., [11]):
hiop(f1) = liII(lj lim sup llog sn(f1,€).

20 st N
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Let E be an (n,¢)-separated set of I of maximal cardinality. As | f{] o = A
(Proposition 1.13), we have |fi(z) — f1(y)| < Az — y| for all z,y € I. If z,y are
two distinct points of E, there exists k < n such that |fF(z) — fF(y)| > . But
|FE(z) = fE(y)] < Xz — y], hence |z —y| > A~"¢ and

Card (E) = sp(f1,¢€) < 4(\"/e +1).

Consequently, hop(f1) = B(G1) < log A.
Now, let H,, C G1 be the subgraph whose vertices are

tn——latn:ISiSMn u /\_kmn,A_kynllngn .
(] k2

The edges of H,, are all possible edges of G; between two vertices, namely:
o [tP 1, t7]) = [A "z, A y,) for 1 <4 < M,
o ARz, ARy ARz, ARy for 2 < k< m,
o D lzg, Ay o [P, iR for 1 < i < M,
The graph H,, is represented in Figure 3.

el BNl o Bl b xe X ]

A x4 yp] +—

Figure 3. The graph H,,; ™! is a full shift on the set of vertices
inside the dots.

The system (H,,o™*!) is a full shift on M,, symbols, plus n fixed points, thus
h(H,,o™ ') = log M,, (see, e.g., [11, p. 111]) and h(H,) = (log My)/(n + 1).
By definition of M,
logM,,

n—4co N+ 1

As H,, is a subgraph of Gy, h(H,) < h(G1). Therefore h(G1) = log A. ]

log A.
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PROPOSITION 2.5: The graph G is transient.

Proof: We are going to build a Markov map g, very similar to f;, such that
| ¢'| o < A and the Markov graph H associated with g expands strictly G;.
Suppose g is already built. The same argument as in the proof of Proposition
2.4 shows that h{H) < log| ¢'| < logA. As G1 C H we have h{(H) > h(Gy),
thus h(H) = h(G1) by Proposition 2.4. This is enough to conclude that Gy is
transient by Theorem 2.3.

The map g: I — I is defined as g(z) = f1(x) for all x € I \[xg, y2]. Let

MZ = M2+2 and Ez = 2/\/M2

and choose s2: [0, ]T/fg] — [—mg, 1] satisfying Properties (3)—(8) except that M;
and ky are replaced respectively by My and ks. Then we define g on [z9, y2] by

- (~z—=z
glx)y =212 [xz + (y2 — x2)5; <M2 2 )} .
Y2 — T2
By Properties (5) and (6), g'(z2) = ¢'(y2) = A2 Mok, = 2271, thus g'(z2) =
Ffi(x2), 9'(y2) = fi(ys2) and g is C*. Moreover, for all z € x4, yo,

l9'(2)] < A72Ma| 3| 00 < ATIM;,

thus |¢'(z)] < A because My = My +2 = 2[)\/8] + 1 < A2. Since | fi| o = A by
Proposition 1.13, one concludes that | ¢'[ oo < A

Define the Markov graph H associated with g as in Subsection 2.1, and denote
by W the set of vertices of H. Compared to Vi, W has two additional vertices
because f1 has M; monotone pieces between x2 and ys and g has My + 2. If

g i(y2 — z2)
t; = R
T + Mg +2
for 0 < i < My + 2, then it is not hard to check that the graph G is equal to
H deprived of the vertices [tas,,tar,41) and [tar, 41, Ea,42) and all the edges that
begin or end at one of them. Consequently Gy C H, which ends the proof. ]

Remark 2.6: We can see intuitively what happens for an f,-invariant measure
when its entropy tends to log A. On each finite subgraph H,,, there is a measure
of entropy (log M,,)/(n + 1). This measure has a corresponding measure p,, on
the interval, the support of which is contained in |J;_o[A™* 2z, A% y,] (in fact,
the support of u, is exactly the Cantor set of all points which never escape from
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that set). We have of course h, (f.) — log A. But if we consider what happens
near 0, we see that y,, converges to &g, the Dirac measure at 0, whose entropy is
null.

3. Local entropy

We recall first some definitions due to Bowen [5] and then we define the local
entropy. There exist different definitions of local entropy; we give here that of
Buzzi [9].

Definition 3.1: Let T: X — X be a continuous map on a compact metric space
X.
The Bowen ball of radius 7 and order n, centered at x is

Bu(z,r) = {y € X: d(T*(y), T*(x)) < r,Vk = 0,...,n — 1}.

An (g,n)-separated set of Y C X is a subset E C Y such that Vy # ¢/
in E, 30 <k <n, d(T*(y), T*(y’)) > . The maximal cardinality of an (e, n)-
separated set of Y is denoted by s,(T,¢,Y).

Definition 3.2: The local entropy of T, hioc(T'), is defined as

hioe(T) = hm lim lim sup 1 sup log s, (T, 8, Bn(z,€)).

e30690 nooo M zeX

Remark 3.3: An (g,n)-cover of Y C X is a subset S C X such that ¥ C
Uses Bn(z,€). Some people use (e, n)-covers instead of (¢, n)-separated sets: it
leads to the same definition of the local entropy.

Local entropy is interesting because it bounds the defect of upper semi-
continuity of the metric entropy g — hu(f). On a compact Riemannian
m-dimensional manifold, local entropy itself is bounded by mlog R(f)/r, where
R(f) is the spectral radius of the differential and r is the differential order. These
results are stated by Buzzi [9] and follow works of Yomdin [24] and Newhouse
[18]. In particular, they directly imply that a C* map on a compact Riemannian
manifold always has a maximal measure (this result can be found in Newhouse’s
work [18]). These results are given in the next two theorems; the second one is
stated for interval maps only.

THEOREM 3.4: Let T: X — X be a continuous map on a compact metric space.
Assume that i, is a sequence of T-invariant measures on X, converging to a
measure pu. Then

limsup hy,, (T') < hy(T) + hioo(T).

n—roo
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THEOREM 3.5: Let f: I — I be a C" map on a compact interval I, r > 1, and
let R(f) = infx>1 /| (f*)'| - Then the local entropy satisfies

huoe( ) < 2R,

In our family of examples, the local entropy can be computed explicitly.
PROPOSITION 3.6: For every n > 1 the local entropy of f, is

hloc(fr) = Iog }j(fr)

Proof: The map f, is such that | f]| .o < A" (Proposition 1.13} and 0 is a fixed
point with f/(0) = A". Hence R(f,) = A" and

uoe( ) < BRI 1o

= log A.

according to Theorem 3.5.

We are going to show the reverse inequality.

Fix £ > 0 and choose n such that 1/2n% < e. Put &g = 1/2n°M,,. If 7 € [Tn, yn]
satisfies f™"*1(x) € [zy,, yn] then |fi(z) — fi(z,)| < e for 0 < i < n+ 1. We write
I =[t7 4,t?] for 1 <i < M,. The length of each I; is d.

Choose a finite sequence w = (wo,...,wp—1) with 1 < w; < M,. Thanks to
the isomorphism between (I, f) and its Markov extension (Section 2), there is
a point T, € [Tn,Ys] with f+TVi(z,) € I, for 0 < i < p — 1. Consider the set
Enp={zu:w=(wo,...,wp_1),w; odd}. The cardinality of E,, ,, is

Mn +1 P N p
> 2
2 =~ \ 4n?
by Lemma 1.4 (ii). If z € E,, , then |f*(z,) — f*¥(z)] < e for 0 < k < (n+ 1)p.
Moreover, if z,,, ., are two distinct elements of E,, ,, then there exists 0 < i <

p — 1 with |w; — w!| > 2, hence |f*+Vi(x,,) — fP+Di(z,))| > §p. Consequently,
Enpis an ((n + 1)p, 6)-separated set of B(ni1)p(Tn,€) for every § < dy, and

m limsup I()g_(}ar%ﬂ > log A. |

hOC T Z 1
1 (f) n_}+oo oo (n—l—l)p 2

This computation shows that the bound log R(f)/r is a sharp one to esti-
mate the local entropy. Moreover, we remarked (Remark 2.6) that there exists
a sequence of measures pu, converging to the Dirac measure &y, with h, (f,) —
htop(fr). Hence, the local entropy is exactly the defect of upper semi-continuity
of the metric entropy in this case.
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